Physical and Chemical Properties of Turmeric Herbal Drink Beads Produced by Reverse Spherification
Main Article Content
Abstract
This study aimed to investigate the optimal conditions for producing turmeric-herbal drink beads using reverse spherification and to examine the physical properties and antioxidant activity of beads containing different concentrations of turmeric juice at four levels (0%, 5%, 10%, and 15%). Soaking was performed in calcium lactate at two different concentrations (1 g/100 g and 1.2 g/100 g) for 10 and 15 min. Results showed that soaking in 1.2 g/100 g of calcium lactate solution for 15 min yielded the highest bead hardness (0.808±0.052 N) with the lowest swelling capacity, suggesting greater bead strength and thicker bead walls. The aspect ratio (long axis: short axis) of the beads was similar among all treatments, which ranged from 1.19 to 1.25. When the herbal beads with varying turmeric concentrations were analyzed for antioxidant activity using the FRAP and ABTS assays, it was found that increasing turmeric content significantly enhanced the antioxidant activity of the beads (p<0.05). This study demonstrates that turmeric juice may offer potential health benefits to consumers. Therefore, these turmeric beads can be applied in the functional food and beverage industry.
Article Details
References
ธงชัย ไทรน้อย, สุนิตรา คามีศักดิ์ และอรรถพล รุกขพันธ์. (2563). เอกสารทางวิชาการ ขมิ้นชัน Curcuma longa L. สถาบันวิจัยพืชสวน กรมวิชาการเกษตร.
พัชริน ส่งศร. (2555). ฟักข้าว พืชพื้นบ้านคุณค่าสูงเพื่อสุขภาพ. แก่นเกษตร, 40(1), 1-6.
พัชรี คำประเวช และสุธีรา วัฒนกุล. (2561). การผลิตเม็ดบีดส์น้ำเสาวรสด้วยเทคนิครีเวิร์สสเฟียริฟิเคชัน. วารสารวิทยาศาสตร์และเทคโนโลยี, 26(8), 1381-1393.
Bennacef, C., Desobry, S., Jasniewski, J., Leclerc, S., Probst, L. & Desobry-Banon, S. (2023). Influence of alginate properties and calcium chloride concentration on alginate bead reticulation and size: A phenomenological approach. Polymers, 15(20), 4163. https://doi.org/ 10.3390/polym15204163
Bevan, P., Codina-Torrella, I., Xydia, C., Hammadi, N. E. & Almajano, M. P. (2024). Alginate spheres: Influence of agar and xanthan gum incorporation on membrane stability and permeability. Polymers (Basel), 16(19), 2746. https://doi.org/10.3390/polym16192746
Bortolini, D. G., Maciel, G. M. & Haminiuk, C. W. I. (2024). Edible bubbles: A delivery system for enhanced bioaccessibility of phenolic compounds in red fruits and edible flowers. Innovative Food Science & Emerging Technologies, 91, 103523. https://doi.org/10.1016/j.ifset.2023.103523
Chuacharoen, T. & Sabliov, C. M. (2019). Comparative effects of curcumin when delivered in a nanoemulsion or nanoparticle form for food applications: Study on stability and lipid oxidation inhibition. LWT - Food Science and Technology, 113, 108319. https://doi.org/10.1016/j.lwt.2019.108319
El-Saadony, M. T., Yang, T., Korma, S. A., Sitohy, M., Abd El-Mageed, T. A., Selim, S., Al Jaouni, S. K., Salem, H. M., Mahmmod, Y., Soliman, S. M., Mo’men, S. A. A., Mosa, W. F. A., El-Wafai, N. A., Abou-Aly, H. E., Sitohy, B., Abd El-Hack, M. E., El-Tarabily, K. A. & Saad, A. M. (2023). Impacts of turmeric and its principal bioactive curcumin on human health: Pharmaceutical, medicinal, and food applications: A comprehensive review. Frontiers in Nutrition, 9, 1040259. https://doi.org/10.3389/fnut.2022.1040259
Fan, Z., Li, L. & Bai, X. (2019). Extraction optimization, antioxidant activity, and tyrosinase inhibitory capacity of polyphenols from Lonicera japonica. Food Science & Nutrition, 7(5), 1786-1794. https://doi.org/ 10.1002/fsn3.1021
Lee, P. & Rogers, M. A. (2012). Effect of calcium source and exposure-time on basic caviar spherification using sodium alginate. International Journal of Gastronomy and Food Science, 1(2), 96-100. https://doi.org/10.1016/ j.ijgfs.2013.06.003
Moulick, S. P., Jahan, F., Islam, M. B., Bashera, M. A., Hasan, M. S., Islam, M. J., Ahmed, S., Karmakar, D., Ahmed, F., Saha, T., Dey, S. S., Boby, F., Saha, M., Saha, B. K. & Bhuiyan, M. N. H. (2023). Nutritional characteristics and antiradical activity of turmeric (Curcuma longa L.), beetroot (Beta vulgaris L.), and carrot (Daucus carota L.) grown in Bangladesh. Heliyon, 9(11), e21495. https://doi.org/10.1016/j.heliyon.2023.e21495
Patomchaiviwat, V., Sriamornsak, P., Chansiri, G., Limmatvapirat, S., Supawattanakul, A., Chonganon, T., Keattiteerachai, A. & Piriyaprasarth, S. (2022). Development of edible bubbles of calcium alginate for encapsulating energy drinks. Science, Engineering and Health Studies, 16, 22050018. https://doi.org/10.14456/sehs.2022.42
Patthamakanokporn, O., Puwastien, P., Nitithamyong, A. & Sirichakwal, P, P. (2008). Changes of antioxidant activity and total phenolic compounds during storage of selected fruits. Journal of Food Composition and Analysis, 21(3), 241-248. https://doi.org/10.1016/j.jfca.2007.10.002
Singh, K., Srichairatanakool, S., Chewonarin, T., Prommaban, A., Samakradhamrongthai, R. S., Brennan, M. A., Brennan, C. S. & Utama-ang, N. (2022). Impact of green extraction on Curcuminoid content, antioxidant activities and anti-cancer efficiency (in vitro) from turmeric rhizomes (Curcuma longa L.). Foods, 11(22), https://doi.org/3633.10. 3390/foods11223633
Tsai, F.-H., Chiang, P.-Y., Kitamura, Y., Kokawa, M. & Islam, M. Z. (2017). Producing liquid-core hydrogel beads by reverse spherification: Effect of secondary gelation on physical properties and release characteristics. Food Hydrocolloids, 62, 140–148. https://doi.org/10.1016/j.foodhyd. 2016.07.002
Zibadi, S., Argüelles, M. & Watson, R. R. (2008). Passion fruit (Passiflora edulis): composition, efficacy and safety. Botanical medicine in clinical practice, 761-766. https://doi.org/10.1079/9781845934132.0761