Using Big Data for Personalized Marketing: Ethics and Effectiveness

Main Article Content

Vipavee Pijitbundarn
Chansit Charernthamanont
Tanasak Wahawisan

Abstract

This academic article aims to synthesize the use of big data for personalized marketing by reviewing research and case studies from Netflix, Amazon, and Spotify. It demonstrates that big data can significantly enhance conversion rates and revenue, as well as foster consumer loyalty. However, the use of vast amounts of data for business purposes raises challenging ethical issues, including privacy violations, insufficient transparency, the phenomena of filter bubbles and echo chambers, and the risks of discrimination arising from algorithms. To address these issues, best practices have been developed, such as the principles of data minimization and purpose limitation, the use of privacy-enhancing technologies (PETs), and the development of an ethical data governance framework. Furthermore, building trust through transparency, user control, and fostering an organizational culture that upholds ethics are also crucial factors.

Article Details

How to Cite
Pijitbundarn, V., Charernthamanont, C., & Wahawisan, T. (2025). Using Big Data for Personalized Marketing: Ethics and Effectiveness. Bodhisastra Review Journal, 5(2), 73–84. retrieved from https://so09.tci-thaijo.org/index.php/BRJ/article/view/7439
Section
Academic Articles

References

บุปผา ลาภะวัฒนาพันธ์. (2565). กลยุทธ์การสื่อสารการตลาดเพื่อเพิ่มขีดความสามารถในการแข่งขันจากผลกระทบวิกฤต COVID-19 ผ่านมุมมองผู้บริหารระดับสูงของธุรกิจค้าปลีกสมัยใหม่ (รายงานการวิจัย). กรุงเทพฯ: มหาวิทยาลัยหอการค้าไทย.

ปรมิน โพธิพัฒไพบูลย์. (2565). การพัฒนาประสิทธิภาพการตลาดดิจิทัลด้วยข้อมูลขนาดใหญ่. วารสารนวัตกรรมการบริหารและการจัดการ, 10(1), 15-23.

ผการัตน์ จำปาน้อย และพงษ์ยุทธ กล้ายุทธ. (2553) กลยุทธ์การตลาดดิจิทัลกับการใช้เครื่องมือการตลาดดิจิทัลของกิจการร้านอาหารและเครื่องดื่ม: กรณีศึกษากิจการเจ้าของคนเดียวในเขตกรุงเทพและปริมณฑล (รายงานการวิจัย). ปทุมธานี: มหาวิทยาลัยรังสิต.

Barboza, F., Kim, H., & Sulaiman, R. (2024). Machine learning for credit risk: A decade of progress and future challenges. Expert Systems with Applications, 238, 121456

Bormida, M. D. (2021). The big data world: Benefits, threats and ethical challenges. In Ethical issues in covert, security and surveillance research (pp. 71-91). Emerald Publishing Limited.

Dorn, M. F., Haemapun, H., Jin, Z., Sgandar, T. O., Pillai, D., Sandeep, A., & Yilmaz, A. (2024). Ethical Considerations in Big Data Analytics. Retrieved from https://www.oxjournal.org/ethical-considerations-in-big-data-analytics/.

Hansen, M. M., Koonsanit, K., & Kulmala, V. (2025). How can data contribute to Smart City innovation: a study from Thailand’s Smart City initiatives. Frontiers in Sustainable Cities, 6, 1473123.

Hu, K., Gong, S., Zhang, Q., Seng, C., Xia, M., & Jiang, S. (2024). An overview of implementing security and privacy in federated learning. Artificial intelligence review, 57(8), 204.

Hukkeri, G. S., Goudar, R. H., Dhananjaya, G. M., Rathod, V. N., & Ankalaki, S. (2025). Split-Fed Learning: A Deep Dive into Methods, Innovations and Future Prospects for Data Privacy and Efficiency in Decentralized Machine Learning. IEEE Access, 13, 46312

- 46333.

Jurkiewicz, C. L. (2018). Big data, big concerns: Ethics in the digital age. Public Integrity, 20(sup1), S46-S59.

Nguyen, G., Sáinz-Pardo Díaz, J., Calatrava, A., Berberi, L., Lytvyn, O., Kozlov, V., Tran, V., Moltó, G., López García, Á. (2025). Landscape of machine learning evolution: privacy-preserving federated learning frameworks and tools. Artificial Intelligence Review, 58, 51.

Okorie, G. N., Egieya, Z. E., Ikwue, U., Udeh, C. A., Adaga, E. M., DaraOjimba, O. D., & Oriekhoe, O. I. (2024). Leveraging big data for personalized marketing campaigns: a review. International Journal of Management & Entrepreneurship Research, 6(1), 216-242.

Raji, M. A., Olodo, H. B., Oke, T. T., Addy, W. A., Ofodile, O. C., & Oyewole, A. T. (2024). E-commerce and consumer behavior: A review of AI-powered personalization and market trends. GSC advanced research and reviews, 18(3), 066-077.

Teraiya, V., & Krishnamurthy, R. (2025). Balancing Personalized Marketing and Data Privacy in the Era of AI. Retrieved from https://cmr.berkeley.edu/assets/documents/pdf/2025-02-balancing-personalized-marketing-and-data-privacy-in-the-era-of-ai.pdf.

Theodorakopoulos, L., Theodoropoulou, A., & Klavdianos, C. (2025). Interactive Viral Marketing Through Big Data Analytics, Influencer Networks, AI Integration, and Ethical Dimensions. Journal of Theoretical and Applied Electronic Commerce Research, 20(2), 115.

Truong, N., Sun, K., Wang, S., Guitton, F., & Guo, Y. (2021). Privacy preservation in federated learning: An insightful survey from the GDPR perspective. Computers & Security, 110, 102402.

Vishwakarma, R. K., Pandey, A., Kundnani, M. P., Yadav, A. K., Singh, M. N., & Yadav, M. S. (2025). Personalization vs. privacy: Marketing strategies in the digital age. Journal of Marketing & Social Research, 2, 177-191.

Wei, K., Li, J., Ding, M., Ma, C., Yang, H. H., Farokhi, F., Jin, S., Quek, T. Q. S., & Poor, H. V. (2020). Federated learning with differential privacy: Algorithms and performance analysis. IEEE transactions on information forensics and security, 15, 3454-3469.