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ABSTRACT

This study investigates the effectiveness of active learning strategies for selecting informative data points to
enhance model performance in text classification tasks. Specifically, it compares random sampling, greedy
selection, and Thompson sampling with Laplace approximation in the context of labeling tweets related to
tourism in Bangkok. A logistic regression model was trained over 100 iterations using data selected by each
method. The results indicate that greedy selection consistently outperformed the other approaches in the early
stages, enabling rapid model improvement. However, its effectiveness declined in later stages as the availability
of informative tweets decreased. Thompson sampling with Laplace approximation exhibited slower initial
performance and required more time for data selection, but demonstrated steady improvement across iterations.
In contrast, random sampling was the fastest method but failed to significantly enhance model performance,
maintaining low accuracy throughout the experiment. These findings suggest that greedy selection is well-
suited for applications requiring quick learning, while Thompson sampling holds promise for long-term learning
scenarios. The insights gained from this research can inform the development of active learning frameworks in
natural language processing tasks, including sentiment analysis and customer opinion mining across various
industries.
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Algorithm 1 Greedy Approach

1:fort=0,1,2,3, ... do
Rt+ 1,a € Logistic Regression Probability
Ar—argmaxgc s Reyq4 # select action

Apply At and observe 0t+1
Ht+1 — append (Ht, At, 0t+1)) # update history

Logistic Regression trained with Ht+1

10: end for
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Algorithm 2 Thompson Sampling Algorithm

1:fort=0,1,2,3, ... do
mu €— Logistic Regression Coefficient
Sigma €— diagonal Inverse Hessian

Sample 6 t ™~ Pt # sample model

2
3
4
5
6: Ap—argmaxgec s Reyq4 # select action
7 Apply At and observe 0t+1

8 H; ., < append(H;, A¢, O¢41)) # update history
9

10: Py < P(0|Heyq) # update distribution

11: end for
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