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ABSTRACT

Currently, Sentiment Analysis has been extensively studied, particularly in the context of customer reviews.
However, most studies focus on Single-label Sentiment Analysis, which evaluates the overall sentiment of a
review as a single entity. In contrast, restaurant reviews often comprise multiple aspects, such as food quality,
price, service, and ambience. This study aims to develop a Multi-label Sentiment Analysis Model for Thai
restaurant reviews using the Wongnai Review Dataset. The model's performance is evaluated through
Traditional Machine Learning approaches, including Logistic Regression, Random Forest, and Support Vector
Machine (SVM), in conjunction with text representation techniques such as Bag of Words (BoW) and Term
Frequency-Inverse Document Frequency (TF-IDF). The experimental results show that the Random Forest
model with TF-IDF achieves superior accuracy of 97.36% in classifying both aspects and sentiments. This
study addresses the research gap in multi-aspect sentiment analysis and contributes to the advancement of
Thai Natural Language Processing (NLP) applications in the future.
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imafiaanadvasf-sunaunnaivasenas LﬁaLLﬂaa"zTammLﬂuL'mma%ﬁauﬁnﬁ%ﬂm@a weititasan
Tuaamanitlildeanuuuanlisessudywimastalasase 3915laus3 MultioutputClassifier 910 Scikit-
learn audssusasluiaslimuninsassunssunnyssinnnanatie (Puttipornchai et al., 2022) Tag'lausis
MultiOutputClassifier a:vinsinlutaatigaiudwiudazihausnaniuadnadas: Sevnlwlueaitaunsn
MwethouazensuallanasUssinnwiauny mnifuuﬁamﬁagaﬁm%’uﬁnﬂu (Train) waznagayu (Test) Lu
samdn 80:20 azinluaadienzviarsuainansthoiissd 6 madie leur 1) LR + Bow 2) LR + TF-IDF 3) RF
+ BoW 4) RF + TF-IDF 5) SVM + BoW lLas 6) SVM + TF-IDF

n15U3zduna (Model Evaluation) nasaninluiasisoudos asvimyianssnfifadssidulszansnnes
Tuiaa lasmdsoillaidondadianasnlsiulunisiluasiensdonsuainasthe Ssilszneudas 1) ¢
mwgnﬁaa (Accuracy) 2) A1ANLLwEN (Precision) 3) @1a313'13 (Recall) Lag 4) @1 F1 (F1-Score) a7

LRAITIURZLD LA MAENNNTN 4-7 ANNEAU
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anuha wazen F1 gIga I(ﬂUﬁﬁuﬁiﬂﬂﬁ?ﬁ%%ﬁ’]Lﬁ%ﬂ’]i?ﬁlﬂﬂwdﬁllﬂ AMNANIN 2
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Algorithm: Multi-label Sentiment Analysis for Thai Restaurant Reviews
INPUT: A Thai restaurant review dataset

OUTPUT: Multi-label sentiment prediction

1 LOAD dataset (Wongnai Review Dataset)

2 REMOVE English characters, special symbols, and numbers

3 REMOVE Thai common words and stopwords

4 SEGMENT text into sentences

5 foreach sentence do

6 TOKENIZE sentence using PyThaiNLP

7 foreach token in sentence do

8 FIND Aspect Dimension [Food, Price, Service, Ambience]

9 if (Aspect is found) then

10 FIND Sentiment of such Aspect [Positive, Neutral, Negative]

11 ADD (Aspect, Sentiment) pair to Preprocessed Data

12 end

13 end

14 end

15 EXTRACT Features using: Bow and TF-IDF

16 DEFINE MultiOutputClassifier with models: LR, RF and SVM

17 TRAIN Multi-label Sentiment Analysis Model on Training Data

18 EVALUATE models using: Accuracy, Precision, Recall and F1-score
19 COMPARE performance of LR, RF, and SVM models

20 SELECT best-performing model based on Accuracy, Precision, Recall, and F1-score

21 END

NAN13IY

nuan1Inasad Anluiaaiduduan 100 seu unudmLguTayagufa 42 wui Tuiaailt imafians
Souiuuugui sl (Random Forest: RF) Taunu msulsstaanudainaiinnnufuass-sunsunuiues
1NN (TF-IDF) 1ﬁﬂi:§w§nﬁw§aq@ I@ﬂﬁmmmgﬂﬁaa (Accuracy) qaﬁa 97.36% fiNANNLAIKEN (Precision)
97.42% fanua (Recall) 97.36% wazAAzu F1 (F1-score) 97.34% G'fiaﬁaLﬂuwaﬂwﬁﬁﬁﬁqﬂlumimmi
NAFOUNINIA iammLﬂuﬁaIuLﬂaﬁlfﬂwsaiuﬂwvlﬁ SaunUmaRansIfenT (Bow) uazsaufiaudsluias
flgTwnaiaiinaasuusdu (SVM) auniumnaiinasssdny (Bow) lapsansnagtilIoufinunaawsigs
USunawasudazluenldasfugadluaned 3

Iumumaamsmaaumﬂ%mﬂﬁﬂmmﬂm‘*ﬁamwmﬁamgﬂLLm_l (TF-IDF uaz BoW) $2an wuin laizansa

WindszAnTnwsasluieald ndnafe dranugneas (Accuracy) Jumaliduanas uazdraugnide (Loss) &
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wnliuAsduluudazsauvesmsinedu (Training epoch) %aazﬁauﬁdﬂmvmslum‘u’%'ﬂujﬂna\ﬂmcﬂalummﬂao
FaanuunniaefanwaAmunzay msnuiwvesmefianssessinallueaiannusudenlas lisuiu
wazaanaudszAniawlumaSouiinsnzanizuasdoyataniny N iianindenduiummesavlasls
WMARAMILYaITANNLARLLLULLENNNNY %aﬂﬁmiﬁ’[umammmL’%ﬂuf'l,@i”amaﬁﬂizﬁwﬁmwmnﬁlﬁu WaY

RINS A AU Tz A uNANIN0 89 TALI N

P = a v & a & &
MN139N 3 Ll]ﬁﬂl]L'Y]UUNQGWFIJ?JGINL@G'JLﬂﬁ']:ﬂﬂ'ﬁ&lm‘ﬂﬂ']ﬂﬂ']ﬂ

Vectorizer Model Accuracy Precision Recall F1-Score
BoW LR 0.9701 0.9708 0.9701 0.9699
TF-IDF LR 0.9494 0.9511 0.9494 0.9486
BoW RF 0.9722 0.9728 0.9722 0.9720
TF-IDF RF 0.9736 0.9742 0.9736 0.9734
BoW SVM 0.9718 0.9724 0.9718 0.9717
TF-IDF SVM 0.9616 0.9626 0.9636 0.9634

a@uazaﬁﬂswwamﬁ%’y

NANANMINAaaIwuIluaadianerarsuainaiotng (Multi-Label Sentiment Analysis: MLSA) fdsza&nSain
gaﬂiﬂm@a?mﬁ:ﬁmimﬁﬂﬂmﬁm (Single-Label Sentiment Analysis: SLSA) aginslinudan lagianizlu
u%umaﬁ%%ﬁummiﬁu‘"ﬂﬂsznam‘ﬁwmULLdagaJLLaza:ﬁaumimﬁ%mﬂ%mUmﬂlu*ﬂamwLﬁm a3
Jienzversuniihoiamsnalitiensguifedeysuas limainsnarienanudaiufidudauldednsudiu
lunsasanudhunsliensdonmamasihominsausnuezuazszyarsualluudezudynldadnitaanua:
AIDUAJUNINND

Iumaﬁlﬁwa&wfﬁﬁqwimm%’yﬁﬁa Im@aﬁl“ﬁmiﬁiuﬂﬂﬁ (Random Forest: RF) Saufiuinadiannuduasen-
§1unauaudvasenals (TF-IDF) eﬁalﬁmﬂsuﬁuﬁizﬁﬂ%mwgalu‘qnﬁﬁ ldun aanugndas (Accuracy)
97.36%, ANuLNKEN (Precision) 97.42%, a11u'11 (Recall) 97.36%, Wazd1 F1-score 97.34% %&qmiﬂmﬂa

] v
1 @ A e Ao

G'fiaqdﬂiﬂwmamﬁmﬁ:ﬁmimﬁﬁwL(ﬁimﬁﬁﬁq@lumu?a‘i’mﬁaumﬁv’fiaﬁmmamﬂmﬂa;Jjﬁ 89.96%
(Khamphakdee & Seresangtakul, 2023)

nnramInesasiuaasliifiuin inafiannudvess-sawnauanuivesonans (TF-IDF) fianuaansalu
mitelilueadilasiunuasasnuldaniunafinadiddnd (Bow) Tasmiaadninavasdfidsnguas
wfanudAen LLazLﬁuﬁmﬁfﬂWﬁ'ﬁJﬁwﬁﬁmwm‘hmwzga DimeandaInuanEmMzaItaa TN
wannuaeuasusunaniz wenanit Iumaﬁi"ﬁmiﬁiuﬂﬂﬁ (Random Forest: RF) tlaiSauiiiouniulaias
dug Altlunmsiianzfersuaimaisinyg wuminanesladading (LR) wazdwwosaiinaasuausdu (SVM)
WU Imﬂam‘ﬁmséwﬂﬂﬂ (Random Forest: RF) f§ar1aanisnfianinlunisiiesisiorsuoinanade
LﬁaamnmmmL%'ﬂuié'nwm:ﬁvlajLﬂuL%aLé’waa%QaWﬁ wazdanununindatanilatasAad
(Overfitting) 1nninluaadadulasrialy aoiu ﬁnﬂNamimaaaw/fwmmmmagﬂﬁiw mdszyndly
I&Jmaﬁlﬁmiqwﬂﬂﬁ(Random Forest: RF) $afLInafianuauedf-sawnauainuavedianals (TF-IDF)
ﬁaLﬂuLmeaﬁﬁﬂsz?m%mwgaq@lumﬁ,mnﬁmmtﬁmaﬁ?ﬁmmmsmuﬂm wazdidnaniwlunis
Urzgndlglunudunisvindasanufaiiu (Opinion Mining) uaznIUIzananan#sTIna (NLP) STl

Mg teag1eduszaninnluauiae
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