

# THE EFFECT OF ORGANIZATIONAL CULTURE AND TEAMWORK ON THE PROJECT PERFORMANCE: A CASE OF BEIJING SHIEN AUTOMATED EQUIPMENT CO., LTD.

Yangyang LI<sup>1</sup> and Suwisa PLAIKAEW<sup>2</sup>

<sup>1</sup> Faculty of Business Administration Thongsook College, Thailand;  
yangyang.li@thongsook.ac.th

## ARTICLE HISTORY

Received: 14 March 2025

Revised: 28 March 2025

Published: 8 April 2025

## ABSTRACT

This research aimed to study the effects of organizational culture and teamwork on project performance in the context of Beijing Shien Automated Equipment Co., Ltd., using a quantitative research method through a questionnaire survey of 180 employees. The results showed that personal data, such as gender, age, education, income, and work experience, did not significantly influence project performance. However, organizational culture, especially employee participation, human resource management, and organizational values, had a significant impact on project performance, with a predictive power of 53.2% (Adjusted  $R^2 = 0.532$ ). In addition, teamwork, including communication, cooperation, unity, and technical skills, also had a significant impact on project performance, with a predictive power of 47.7% (Adjusted  $R^2 = 0.477$ ). The results indicated the importance of promoting employee participation, effective human resource management, and developing a capable and cohesive team to improve project performance. The recommendations for organizations include fostering an organizational culture conducive to cooperation, developing human resource management strategies, and supporting teamwork to enhance project capabilities in the industry.

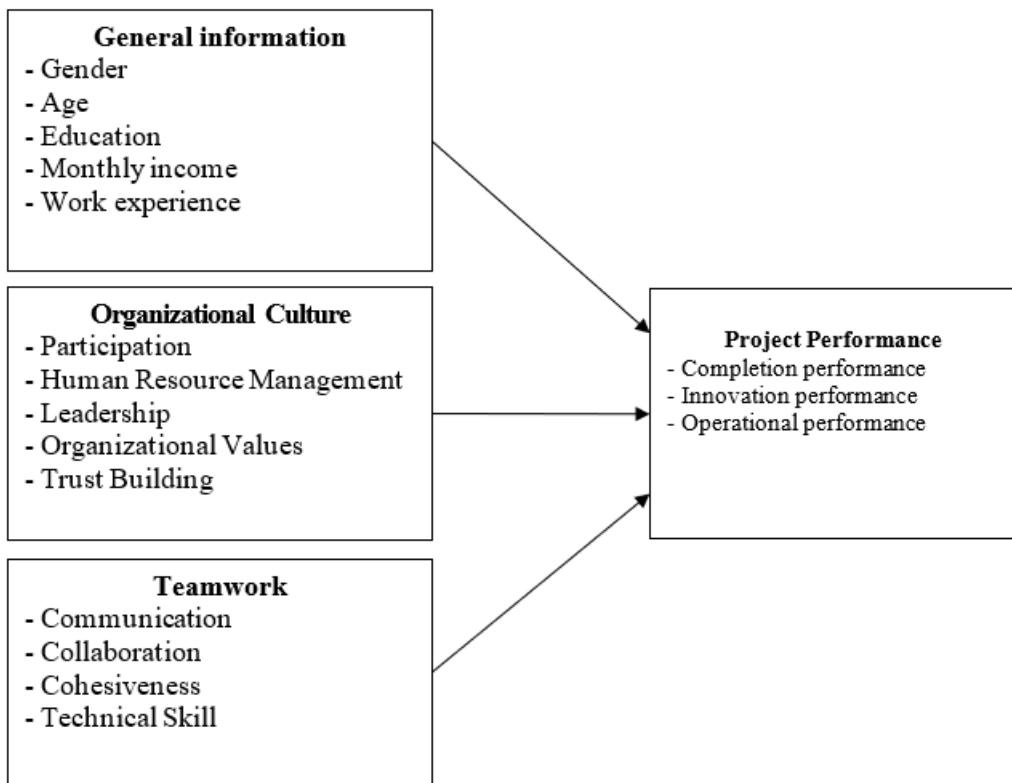
**Keywords:** Organizational Culture, Teamwork, Project Performance, Automated Equipment

**CITATION INFORMATION:** Li, Y., & Plaikaew, S. (2025). The Effect of Organizational Culture and Teamwork on the Project Performance: A Case of Beijing Shien Automated Equipment Co., Ltd. *Procedia of Multidisciplinary Research*, 3(4), 7.

## INTRODUCTION

Organizational culture and teamwork are important elements that significantly affect project performance in various industries (Cui, 2023). Especially in projects involving automation equipment, which require advanced technologies and high technical complexity, organizations with a strong and flexible culture, consisting of shared values, beliefs, and practices, can foster an atmosphere conducive to effective cooperation, creativity, and problem solving (Chien, 2016). In the context of automation equipment projects, teamwork is an important factor that facilitates clear communication, mutual trust, and a shared understanding of project goals, which are essential for managing the complexity of automation technologies (Yoo, 2020). When employees can work well together in an organizational culture that promotes collaboration, it will improve the overall project performance through sharing knowledge, skills, and experiences (Abbas et al., 2022). In addition, the automation equipment industry is highly competitive and requires fast and precise operations. Therefore, understanding the factors that affect project performance in the context of organizational culture and teamwork is important to improve organizational practices to achieve the best results (Badi, 2024).

Previous research has consistently highlighted the role of organizational culture and teamwork in driving successful project outcomes, particularly in traditional sectors such as construction, healthcare, and education. However, in the automation industry—where technical systems and rapid change are dominant—there remains a lack of evidence regarding how these human-centered factors function. Automation projects, unlike labor-intensive ones, require not just technical excellence but also strong collaboration and cultural alignment. Therefore, it is critical to examine these elements in automation settings to understand their true impact and develop context-specific strategies for performance enhancement. Although there are many studies on the influence of organizational culture and teamwork on project success in other industries, there is a lack of research that specifically examines the role of these factors in automation-related projects (Dong, 2021). The rapid development of automation technologies has brought new challenges to projects in this industry, which is different from traditional projects that rely primarily on human labor. Automation projects rely heavily on technology and machinery, raising questions about how organizational culture and teamwork can adapt and evolve to suit this rapidly changing environment (Colombo & Beuren, 2023). In addition, the nature of automation projects that require complex technical requirements and tight deadlines makes team management a key factor affecting project success (Besteiro, de Souza Pinto, & Novaski, 2015). However, there is limited research that examines the relationship between organizational culture, teamwork, and project success in the context of the automation industry (Badi, 2024). Therefore, this research aims to fill this gap by providing useful insights for project managers, team leaders, and stakeholders in the automation industry to help develop appropriate strategies and practices (Abbas et al., 2022).


Based on this significance, the researcher aimed to study the effects of organizational culture and teamwork on project outcomes in the context of Beijing Shien Automated Equipment Co., Ltd. This study focuses on analyzing the components of organizational culture and teamwork-related factors that affect project performance, with the aim of identifying factors that can enhance project management efficiency and improve teamwork processes in the automation equipment industry (Dong, 2021). The study is grounded in relevant theoretical frameworks such as Social Capital Theory, which emphasizes trust and information sharing within teams, and Organizational Learning Theory, which highlights continuous improvement through collective learning. The results of the research will help organizations develop policies and strategies to foster an organizational culture that is conducive to collaboration and innovation, as well as develop effective teamwork mechanisms to better achieve project goals (Cui, 2023). In addition, the results of the research can be used as a guideline for designing future automation-related projects, so that they are in line with technological advancements and can

effectively cope with the complexity of automation systems (Colombo & Beuren, 2023). Finally, this research will contribute to expanding the scope of knowledge in project management, especially in the context of the automation equipment industry, which is still an area with limited research at present (Besteiro, de Souza Pinto, & Novaski, 2015).

### Objectives

- 1) To study project performance categorized by personal information.
- 2) To investigate the effect of organizational culture on project performance.
- 3) To investigate the effect of teamwork on project performance.

### Conceptual Framework and Hypotheses



### Hypothesis

Hypothesis 1: Employees with different personal information has project performance.

Hypothesis 2: Organizational culture has an effect on project performance.

Hypothesis 3: Teamwork has an effect on project performance.

## LITERATURE REVIEWS

### Organizational Culture

Organizational culture refers to the shared values, beliefs and practices that define the internal environment of an organization and influence employee behavior, leadership, human resource management (HRM), trust building and employee engagement (Fernandes, Pereira, & Wiedenhöft, 2023). Organizational culture plays a key role in promoting employee engagement, organizational performance and long-term sustainability (Pathiranage, 2019). One of the key dimensions of organizational culture is employee participation, which increases identification with the organization and cooperation through participatory mechanisms such as quality circles and joint advisory boards (Kpakol, Obiora, & Jaja, 2016). However, assessment of organizational culture is often biased, and a mixed approach is needed, such as traditional surveys combined with in-depth understanding through employee engagement (Booth & Ivolga, 2019; Lunn, 2017). In the context of HRM, organizational culture affects recruitment,

performance management and employee engagement, with studies showing that only 40% of Czech organizations value organizational culture. Despite their important role in times of crisis (Urbancová & Vrabcová, 2022), the relationship between organizational culture and leadership has been extensively studied. Transformational leadership has been found to promote a culture of innovation and trust (Widowati, Ismail, & Hermawan, 2023), while transactional leadership is more common in small organizations with kinship cultures (Cantermi & Lizote, 2022). Organizational values, a fundamental component of organizational culture, can be measured using the Competing Values Framework (CVF), which helps identify cultural characteristics to shape organizational strategy (Calciolari & Prenestini, 2022), while trust-building, another important dimension of organizational culture, can be assessed using tools such as the Omnibus Trust-Scale, which measures the level of trust in coworkers and management. This results in increased engagement and improved organizational performance (Pandian et al., 2023; Kolmykova & Korneeva, 2021). While organizational culture surveys remain the primary measurement tool, new approaches such as the use of anonymous digital indicators (OBTRUSIVE Indicators) are gaining popularity to reduce bias and accurately capture organizational culture (Reader & Gillespie, 2023). Research on organizational culture in sectors such as healthcare, education, and business confirm the importance of organizational culture to institutional success (Sari & Huzaifah, 2023; Molo & Molo, 2022; Galang, 2023). Finally, a strong organizational culture supported by visionary leadership, effective HRM practices, employee engagement, clear organizational values, and internal trust will help organizations adapt and perform well in the long run (Nguyen & Watanabe, 2017; Garengo & Betto, 2024). In this study, organizational culture is analyzed through the lens of Resource Dependence Theory, which suggests that organizations must effectively manage internal and external dependencies. For automation projects, this means ensuring that HR systems, communication channels, and decision-making structures are aligned to reduce uncertainty and enhance efficiency. When culture supports participatory mechanisms and fair HR practices, teams are more likely to function autonomously and adapt to external challenges. This theoretical foundation helps explain how organizational mechanisms influence performance beyond technical capacity alone.

### **Teamwork**

Teamwork is a fundamental factor in organizational success, fostering efficiency, innovation, and problem-solving in a variety of industries, including business, healthcare, education, and technology (Omar & Plumb, 2023). Teamwork is defined as the process of individuals working together to achieve a set goal, and it involves key components such as communication, collaboration, cohesiveness, and technical skills (Crawford & McEwan, 2022). According to social capital theory, effective teamwork relies on strong interpersonal connections, shared norms, and trust. These relational assets enable the free flow of knowledge and enhance cooperation under pressure. In high-technology environments, where coordination and innovation are critical, social capital within teams can compensate for gaps in technical infrastructure or formal control. Effective teamwork can increase team performance, increase productivity, and promote team member satisfaction (Driskell, Salas, & Driskell, 2018). While communication is an important component of teamwork, it helps to clarify tasks, reduce misunderstandings, and promote knowledge sharing among team members. (Hartner-Tiefenthaler & Loerinc, 2022). In agile environments, structured communication models can help teams coordinate and support each other more effectively (Malone et al., 2023). Collaboration, defined as working together to solve problems, share resources, and make decisions, is a factor that contributes to team unity and goal achievement (Noël et al., 2022; Farshad & Fortin, 2023). This is especially true in digital and virtual teams that face challenges in coordinating and managing shared tasks (Sten et al., 2021). In addition, team cohesion (Cohesiveness) directly affects the stability and performance of a team (Grossman et al., 2015;

Salas et al., 2015). Research suggests that teams high in cohesiveness tend to be better at problem solving and adapting to high-risk situations, such as in the healthcare and aviation sectors (Mediani & Kurniawan, 2018; Bonny, 2023). In addition, training that focuses on developing teamwork skills, such as building trust and managing conflict, has been found to improve cohesion and collaborative outcomes in teams (Etherington et al., 2021). Finally, technical skills, such as task expertise and practical abilities, are important factors in teamwork, particularly in STEM (science, technology, engineering, and mathematics) and software development (Shofiyah et al., 2022; Juneja, 2020). In project-based learning environments and engineering education, teamwork skills can be assessed using self-assessments, peer-reviewed assessments, and teacher assessment is a proven effective approach (Varela & Mead, 2018). Despite advances in the study of teamwork, challenges remain, particularly in standardizing assessment tools and addressing bias in self-evaluations of team performance (Langford & Jain, 2023). However, integrating factors such as communication, collaboration, cohesion, and technical skills can help organizations build high-performing teams and lead to organizational success and innovation (Choi & Miller, 2023). Thus, building social capital through communication training, trust-building activities, and shared goal-setting becomes essential to ensure that teams can perform at a high level even in unpredictable or rapidly changing conditions.

### **Project performance**

Project performance is a key factor in determining project success in a variety of industries, including construction, IT, healthcare, and business management. It refers to the effectiveness of a project in achieving its objectives in terms of scope, duration, budget, and quality, as well as creating long-term value (Prasetya & Soehari, 2020; Naguib et al., 2020). Effective project performance management increases an organization's competitiveness and enables the project to support its strategic goals (Shelley, 2023). One important dimension of project performance is completion performance, which measures a project's ability to deliver on time, budget, and quality standards (Vrine & Trumper, 2017). Advanced tools such as earned value management (EVM) and artificial neural networks (AI) can increase the accuracy of project success predictions (Iranmanesh & Hojati, 2015). In addition, innovation performance is an important dimension, focusing on a project's ability to develop new methods, improve work processes, and create intellectual property. (Boileau-Falardeau et al., 2021; Ponta, Puliga, & Manzini, 2021). Innovation performance can be measured by the efficiency, timing, variety, and quality of the results (Matveeva, Chigwanda, & Matveeva, 2022). Operational Performance considers the efficiency of project implementation in terms of resource allocation, scheduling, and coordination (Kim et al., 2015). Sociotechnical Analysis, such as work behavior and knowledge exchange, is an important factor that helps make project implementation more efficient (Sawaia, 2022; Daniel, 2023). In addition, Value Creation Performance measures the long-term value that the project creates, such as economic returns, environmental impacts, and stakeholder satisfaction (Maylor et al., 2017). Finally, Employee Performance determines whether project personnel can contribute to the success of the project through their skills, collaboration, and how well individual performance is being measured (Ingle, Gangadhar, & Deepak, 2024). However, despite progress in project measurement, challenges remain, such as inadequate focus on project investment, lack of standardized measurement frameworks, and behaviors that undermine performance, such as duplication of work and excessive time-taking (Dima et al., 2023; Köroğlu & Yıldırım, 2023). Addressing these issues requires an integrated approach that combines strategic planning, talent management, and the use of real-time tracking systems (Ahmed, 2023; Ingle, Mahesh, & MD, 2021).

## RESEARCH METHODOLOGY

This study focuses on the employees of Beijing Shien Automated Equipment Co., Ltd. located in Beijing. The population used in the research is all 226 employees of the company. In order to determine the appropriate and statistically significant sample size, the researcher applied the criteria of Weiers (2005), which recommends that a population of 226 people should use approximately 180 samples. The sampling method used in this research is Stratified Random Sampling, which takes into account the proportion of males and females within the organization to achieve balance and appropriate representation of the population. From a total of 226 employees, the researcher determined the sample to consist of 90 males and 90 females. This stratified sampling process ensures that both genders are equally represented in the sample, which accurately reflects the population structure of the organization. While stratified sampling based on gender improves representativeness, it may overlook other demographic or departmental characteristics that influence project involvement. This can limit the generalizability of the findings to broader organizational contexts. Additionally, the cross-sectional nature of the data constrains the ability to examine changes in perceptions or performance over time. These methodological choices, although justified by feasibility, should be acknowledged as limitations when interpreting the findings and drawing conclusions about cause-and-effect relationships between variables.

The data collection in this research used primary data, which was collected through a systematically designed questionnaire covering the main issues of the study, namely organizational culture, (Organizational Culture), Teamwork and Project Performance). The questionnaire was developed with reference to related literature to ensure that the instruments used can measure the variables accurately and reliably. Before being used for actual data collection, the questionnaire was checked for content validity by three experts using the Index of Item Objective Congruence (IOC), which must be greater than 0.50 to be considered acceptable (Jusoh, Zubairi, & Badrasawi, 2018). In addition, the reliability of the research instrument was tested using Cronbach's Alpha coefficient, which must be greater than 0.70 to ensure internal consistency of the questionnaire (Amirrudin, Nasution, & Supahar, 2021). Field data collection was conducted at Beijing Shien Automated Equipment Co., Ltd., which was the study area. The questionnaires were distributed to a random sample of 180 employees, consisting of 90 male and 90 female employees. To reduce bias in data collection, the researchers used both in-person and electronic distribution methods, which increased the response rate and reduced errors from respondent mis-data entry.

In this study, both descriptive statistics and inferential statistics were used to analyze the collected data comprehensively and accurately. For descriptive statistics, frequency, percentage, mean, and standard deviation were used to summarize and show the general characteristics of the sample group, such as gender, age, education, income, and work experience, as well as the distribution of employees' opinions on organizational culture, teamwork, and project performance. In addition, inferential statistics were used to test the research hypotheses, using t-test to compare the means between two sample groups, such as comparing the level of perception of organizational culture of male and female employees. One-way ANOVA was used to compare the means between three or more groups, such as comparing the project performance of employees with different ages. Finally, multiple regression analysis was used to analyze the influence of organizational culture and teamwork on project performance. By examining the relationship between the independent and dependent variables, in addition, the Multicollinearity test using Variance Inflation Factor (VIF) and Tolerance values were used to prevent the problem of high correlation between the independent variables, which increased the reliability of the statistical model.

## RESULTS OF THE STUDY

### General Information of Respondents

From the study, it was found that the majority of respondents were male, 90 people (50.00%). Most were aged between 20 and 30 years, 80 people (44.44%). The majority had a bachelor's degree, 171 people (95.00%). Most had an average monthly income between 3,001 and 4,000 CNY, 99 people (55.00%). Additionally, 72 people (40.00%) had more than 10 years of work experience.

### Opinion level on Artificial Intelligence Adoption, Innovative Behavior, and Employee Performance

**Table 1** Opinion level on Organizational Culture, Teamwork, and Project Performance

| Variables                                | Mean        | S.D.        | Opinion Level |
|------------------------------------------|-------------|-------------|---------------|
| <b>Organizational Culture</b>            |             |             |               |
| - Participation                          | 2.30        | 0.58        | Low           |
| - Human Resource Management              | 2.24        | 0.63        | Low           |
| - Leadership                             | 2.25        | 0.58        | Low           |
| - Organizational Values                  | 2.15        | 0.66        | Low           |
| - Trust Building                         | 2.29        | 0.61        | Low           |
| <b>Overall of Organizational Culture</b> | <b>2.25</b> | <b>0.42</b> | <b>Low</b>    |
| <b>Teamwork</b>                          |             |             |               |
| - Communication                          | 2.23        | 0.61        | Low           |
| - Collaboration                          | 2.25        | 0.63        | Low           |
| - Cohesiveness                           | 2.24        | 0.64        | Low           |
| - Technical Skill                        | 2.25        | 0.62        | Low           |
| <b>Overall of Teamwork</b>               | <b>2.24</b> | <b>0.45</b> | <b>Low</b>    |
| <b>Project Performance</b>               |             |             |               |
| - Completion Performance                 | 2.25        | 0.66        | Low           |
| - Innovation Performance                 | 2.17        | 0.64        | Low           |
| - Operational Performance                | 2.24        | 0.67        | Low           |
| <b>Overall of Project Performance</b>    | <b>2.22</b> | <b>0.47</b> | <b>Low</b>    |

From Table 1, the results of the study on the level of opinions on organizational culture, teamwork, and project performance found that all variables had low levels of opinions. Organizational culture had a mean of 2.25 (S.D. = 0.42), especially in the aspect of organizational values (Mean = 2.15, S.D. = 0.66), which was the lowest. Teamwork had a mean of 2.24 (S.D. = 0.45), with all components, such as communication and cooperation, also being at low levels. In addition, the project performance had a mean of 2.22 (S.D. = 0.47), especially in the aspect of innovation (Mean = 2.17, S.D. = 0.64), which was the lowest.

### Hypothesis Testing

Hypothesis 1: Employees with different personal information have project performance differently.

**Table 2** Hypothesis Result of Influence of employee's general information on project performance

| General Information | Statistics and p-value        | Results  |
|---------------------|-------------------------------|----------|
| - Gender            | t-value = -0.705, Sig. = .482 | Rejected |
| - Age               | f-value = 0.525, Sig. = .665  | Rejected |
| - Education         | f-value = -0.780, Sig. = .437 | Rejected |
| - Monthly income    | f-value = 2.388, Sig. = .070  | Rejected |
| - Work experience   | f-value = 0.573, Sig. = .633  | Rejected |

From Table 2, the hypothesis testing results show that general employee data, including gender (t-value = -0.705, Sig. = .482), age (f-value = 0.525, Sig. = .665), education level (f-value = -0.780, Sig. = .437), monthly income (f-value = 2.388, Sig. = .070) and work experience (f-value = 0.573, Sig. = .633), do not have a statistically significant influence on project performance (Sig. > .05), resulting in the rejection of all hypotheses, indicating that employees' personal factors do not directly affect project performance.

Hypothesis 2: Organizational culture has an effect on project performance.

**Table 3** Hypothesis testing results of organizational culture on overall project performance.

| Organizational Culture  | b     | Std. Error | $\beta$ | t      | Sig.  | Tolerance | VIF   |
|-------------------------|-------|------------|---------|--------|-------|-----------|-------|
| Constant                | .780  | .130       |         | 5.979  | .000* |           |       |
| - Participation         | .539  | .062       | .673    | 8.737  | .000* | 0.421     | 2.373 |
| - Human Resource        | .108  | .042       | .144    | 2.540  | .012* | 0.774     | 1.293 |
| Management              |       |            |         |        |       |           |       |
| - Leadership            | .048  | .047       | .059    | 1.013  | .312  | 0.730     | 1.370 |
| - Organizational Values | -.103 | .042       | -.147   | -2.456 | .015* | 0.702     | 1.424 |
| - Trust Building        | .033  | .043       | .043    | 0.763  | .446  | 0.780     | 1.282 |

R = .738, R<sup>2</sup> = .544, Adjusted R<sup>2</sup> = .532, SE<sub>EST</sub> = .319, F = 43.504, Sig. = .000\*

\*\*\* Statistically significant at the .001 level.

\*\* Statistically significant at the .01 level.

\* Statistically significant at the .05 level.

From Table 3, it was found that Organizational Culture, specifically Participation, Human Resource Management, and Organizational Values, had a statistically significant influence on the overall project performance of Beijing Shien Automated Equipment Co., Ltd. at the .05 level, with a predictive power of 53.2% (Adjusted R<sup>2</sup> = 0.532) and a Standard Error of 0.319 (SE<sub>EST</sub> = 0.319). Additionally, the results of the multicollinearity test showed that the Tolerance value ranged between 0.421 and 0.780, which is greater than 0.100, and the VIF value ranged between 1.282 and 2.373, which is less than 10.000, indicating that the independent variables did not have a multicollinearity problem. The aspect of Organizational Culture that has the most influence on the overall project performance of Beijing Shien Automated Equipment Co., Ltd. is Participation ( $\beta$  = .673), while Organizational Values has a negative effect ( $\beta$  = -.147), and Human Resource Management has the least influence ( $\beta$  = .144). This relationship can be expressed in unstandardized forms:

$$\hat{y} = .780 + .539_{\text{Participation}} + .108_{\text{Human Resource Management}} + .048_{\text{Leadership}} - .103_{\text{Organizational Values}} + .033_{\text{Trust Building}}$$

Hypothesis 3: Teamwork has an effect on project performance.

Table 4: Hypothesis testing results of teamwork on overall project performance

| Teamwork          | b    | Std. Error | β    | t     | Sig.  | Tolerance | VIF   |
|-------------------|------|------------|------|-------|-------|-----------|-------|
| Constant          | .613 | .125       |      | 4.881 | .000* |           |       |
| - Communication   | .169 | .045       | .222 | 3.804 | .000* | 0.822     | 1.217 |
| - Collaboration   | .227 | .045       | .309 | 5.024 | .000* | 0.740     | 1.351 |
| - Cohesiveness    | .138 | .043       | .189 | 3.173 | .002* | 0.791     | 1.264 |
| - Technical Skill | .182 | .048       | .240 | 3.806 | .000* | 0.701     | 1.426 |

$R = .699$ ,  $R^2 = .488$ , Adjusted  $R^2 = .477$ ,  $SE_{EST} = .337$ ,  $F = 43.623$ ,  $Sig. = .000^*$

\*\*\* Statistically significant at the .001 level.

\*\* Statistically significant at the .01 level.

\* Statistically significant at the .05 level.

From Table 4, it was found that Teamwork, including Communication, Collaboration, Cohesiveness, and Technical Skill, had a statistically significant influence on the overall project performance of Beijing Shien Automated Equipment Co., Ltd. at the .05 level, with a predictive power of 47.7% (Adjusted  $R^2 = 0.477$ ) and a Standard Error of 0.337 ( $SE_{EST} = 0.337$ ). Additionally, the results of the multicollinearity test showed that the Tolerance value ranged between 0.701 and 0.822, which is greater than 0.100, and the VIF value ranged between 1.217 and 1.426, which is less than 10.000, indicating that the independent variables did not have a multicollinearity problem. Teamwork that had the most influence on the overall project performance of Beijing Shien Automated Equipment Co., Ltd. was Collaboration ( $\beta = .309$ ), followed by Technical Skill ( $\beta = .240$ ), Communication ( $\beta = .222$ ), and, least of all, Cohesiveness ( $\beta = .189$ ). This relationship can be expressed unstandardized forms:

$$\hat{y} = .613 + .169_{\text{Communication}} + .227_{\text{Collaboration}} + .138_{\text{Cohesiveness}} + .182_{\text{Technical Skill}}$$

## DISCUSSION OF RESULTS

According to the study conducted at Beijing Shien Automated Equipment Co., Ltd., it was found that personal factors such as employees' age, experience, and education level did not have a significant impact on the overall performance of the project, because the project implementation relies more on technical factors and standardized work processes than on differences in personal characteristics. However, when considering specific dimensions, it was found that the gender of employees had a significant impact on performance at a level of 0.05, which was in line with the hypothesis of the study. Gender may influence the way the project works and manages technical or administrative problems. It was found that men and women have different decision-making and communication approaches, which affects the performance of the project. The results of this study are consistent with the research of Ojiako et al. (2014) who found that gender did not significantly affect decision-making in the project, while Joshi et al. (2014) found that gender affected evaluation and rewards depending on the occupation, industry, and employment level. In addition, Park (2020) also found that the presence of female leaders and gender representation in public organizations had a positive impact on performance.

Organizational culture, such as participation, human resource management, and organizational values, have a significant impact on overall project performance at a significance level of 0.05, with a predictive power of 53.2%. Employee participation in the decision-making process is the factor with the highest positive influence on project performance, as it promotes employee commitment and responsibility (Kpakol, Obiora, & Jaja, 2016). Participation also promotes knowledge sharing and innovation that can be used to improve work processes (Ponta, Puliga,

& Manzini, 2021). In addition, effective human resource management is an important factor that increases employee satisfaction and motivation, leading to project success (Ghattas, Bassioni, & Gaid, 2022). However, organizational values have a negative impact on project performance, as sometimes organizational values may not be consistent with project implementation, resulting in internal conflicts and ineffective decision-making (Beaver, Baker, & Binder, 2020). This research is consistent with the idea of Gigliotti, Paro, & Gerolamo (2020) who stated that conflicts of organizational values can lead to decision-making problems and project delays. It is important to note that this study is correlational in design, meaning it identifies relationships but cannot definitively establish causation. Factors such as leadership style, organizational structure, or psychological safety might mediate or moderate the observed effects. These unmeasured variables could partially explain the variance in project performance and should be explored in future studies. Moreover, the reliance on self-report data may introduce subjectivity, highlighting the need for multi-method approaches in future research, such as observations or interviews, to validate these findings.

Teamwork, which includes communication, cooperation, unity, and technical skills, has a significant impact on overall project performance at a significance level of 0.05, with a predictive power of 47.7%. Team cooperation is the factor that has the highest positive influence on project performance, as it allows for quick and efficient problem solving (Tigges et al., 2019). Knowledge sharing within the team also reduces work errors (Noël et al., 2022). In addition, technical skills of team members are an important factor in reducing errors and increasing the quality of work (Shofiyah et al., 2022). However, trust among team members was the factor with the lowest mean score, which may be due to differences in working methods and experiences (Ellis et al., 2022). This study's results are consistent with research by Grossman et al. (2015) and Salas et al. (2015) that emphasize the importance of team unity, as well as Mediani and Kurniawan (2018) who found that developing unity through training can improve work performance.

### **Recommendations from the study**

#### **1) Policy and Practical Recommendations**

From the results of this study, organizations should focus on developing and supporting the performance of employees regardless of personal factors such as gender, age or experience through equal training and development. Flexible policies such as teleworking and appropriate time management should be implemented to accommodate the diversity of employees and help improve work efficiency. In addition, creating an organizational culture that allows employees at all levels to participate in decision-making is essential because it helps to build a sense of ownership and responsibility for the project. Human resource management should focus on fairness, transparency and sustainability, such as recruitment systems, appropriate compensation and providing constructive feedback. The organization's values should be adjusted to align with the actual work process and the needs of the employees. In addition, teamwork should be promoted by organizing activities that encourage cooperation and continuously develop the technical and communication skills of employees. Building a cohesive team through organizing relationship-building activities will increase job satisfaction and lead to more successful project outcomes.

#### **2) Academic Recommendations**

The results of this study indicate that personal factors, organizational culture, and teamwork influence project performance. Therefore, academics should further study the concepts of organizational behavior and work psychology related to employee satisfaction and engagement to better understand the factors affecting motivation and work performance. In addition, human resource management concepts related to flexible policies and diversity management should be used as a framework for studies to develop more effective models. Furthermore, studying the relationship between organizational structure and organizational culture will help scholars

develop strategies that enable employees to adapt and participate fully. Studying how these factors affect the problem-solving and innovation capabilities of teams will help organizations apply them to different work contexts. Cross-cultural studies of the effects of these factors may provide deeper understanding and provide universally applicable approaches.

### 3) Suggestions for future research

Further studies should focus on exploring the impact of individual factors, such as age, experience, and education level, across different industries or regions to understand which management policies and approaches are most appropriate in different contexts. In addition, the role of organizational culture in specific situations, such as during organizational change or crisis, should be investigated to identify how organizational culture can help or hinder project management. Another area that should be further investigated is the in-depth relationship between teamwork and project outcomes, particularly in the areas of innovation and complex problem solving, to understand which strategies enhance team performance. In addition, the long-term impact of employee skills development and training on project outcomes should be investigated to understand the effectiveness of human resource investments and to develop more appropriate and effective training models. Future research should take into account contextual factors, such as organizational culture, industry type, and rapidly changing technologies, to design strategies that are more appropriate for future organizational needs. Moreover, as this study is based on a correlational design, it cannot establish causal relationships. Future research should consider adopting longitudinal or experimental methods to examine how organizational culture and teamwork evolve and influence project outcomes over time. Additionally, scholars are encouraged to explore potential mediating and moderating variables such as leadership style, innovation climate, or psychological safety to better understand the mechanisms behind these relationships. Using mixed methods approaches, including interviews or case studies, may also provide richer insights and strengthen the validity of future findings.

## REFERENCES

Abbas, M. A., Akram, M. W., Mahar, S., & Kowang, T. O. (2022). Impact of organisational culture on project performance with mediating role of knowledge creation process. *International Journal of Public Sector Performance Management*, 10(2-3), 149-163.

Ahmed, R. (2023). Project performance measures and metrics framework. In *Research Handbook on Project Performance* (pp. 11-22). Edward Elgar Publishing.

Badi, S. (2024). Relationship between organisational culture and collective coping strategies in project teams: an exploratory quantitative study in the UAE construction industry. *International Journal of Productivity and Performance Management*, 73(3), 794-816.

Beaver, Z., Baker, R., & Binder, C. (2020). *Integrating organizational values with workplace performance* (pp. 228-247). IGI Global.

Besteiro, E. N. C., de Souza Pinto, J., & Novaski, O. (2015). Success factors in project management. *Business Management Dynamics*, 4(9), 19-34.

Boileau-Falardeau, M., Farooqi, S., O'Rourke, C., & Payne, L. (2021). Revisiting the Innovation Strategy performance measurement process: insights from practice. *Canadian Journal of Public Health*, 112(Suppl 2), 262-269.

Bonny, J. W. (2023). Self-report and facial expression indicators of team cohesion development. *Behavior Research Methods*, 55(1), 1-15.

Booth, S., & Ivolga, M. (2019). *Beyond the figures of organisational culture surveys*. Master Thesis, Department of Business Administration, Lund University

Calciolari, S., & Prenestini, A. (2022). Values-based methods for measuring organizational culture: logic, evidence and critique. In *Handbook of research methods for organisational culture* (pp. 69-91). Edward Elgar Publishing.

Cantermi, B. D. A., & Lizote, S. A. (2022). Leadership and organizational culture in small companies. *Revista de Administração da UFSM*, 15(4), 634-656.

Chien, S. Y. J. (2016). *The influence of cultural factors on trust in automation*. University of Pittsburgh.

Choi, S., & Miller, K. (2023). Organizational team formation: projects, structures, and transactive memory. *Industrial and Corporate Change*, 32(5), 1000-1022.

Colombo, V. L. B., & Beuren, I. M. (2023). Accountants robots in shared service centers: effects of the culture for innovation, work engagement and performance measurement system. *Journal of Business & Industrial Marketing*, 38(12), 2760-2771.

Crawford, K., & McEwan, D. (2022). Teamwork makes the dream work: How to be a great teammate. *Frontiers for Young Minds*, 10, 685055.

Cui, L. (2023). The Organizational Culture and Organizational Performance of the Construction Industry in Jiangsu. *Frontiers in Business, Economics and Management*, 11(1), 228-235.

Daniel, P. A. (2023). Modeling relationships of projects and operations: toward a dynamic framework of performance. In *Research Handbook on Project Performance* (pp. 39-53). Edward Elgar Publishing.

Dima, C., Rădulescu, C. V., Petrescu, I. E., & Diaconu, A. (2023). Challenges Regarding the Performance of Public Investment Projects. In R. Pamfilie, V. Dinu, C. Vasiliu, D. Pleșea, L. Tăchiciu eds. 2023. *9th BASIQ International Conference on New Trends in Sustainable Business and Consumption. Constanța, Romania, 8-10 June 2023* (pp. 226-233). Bucharest: ASE.

Dong, X. L. (2021, October). A Primary Review on Team Performance in Automated Systems. In *International Symposium on Software Reliability, Industrial Safety, Cyber Security and Physical Protection for Nuclear Power Plant* (pp. 124-134). Singapore: Springer Nature Singapore.

Driskell, J. E., Salas, E., & Driskell, T. (2018). Foundations of teamwork and collaboration. *American Psychologist*, 73(4), 334.

Ellis, F. Y. A., Amos-Abanyie, S., Kwofie, T. E., Amponsah-Kwartah, K., Afranie, I., & Aigbavboa, C. O. (2022). Contribution of person-team fit parameters to teamwork effectiveness in construction project teams. *International Journal of Managing Projects in Business*, 15(6), 983-1002.

Etherington, N., Larrigan, S., Liu, H., Wu, M., Sullivan, K. J., Jung, J., & Boet, S. (2021). Measuring the teamwork performance of operating room teams: a systematic review of assessment tools and their measurement properties. *Journal of Interprofessional Care*, 35(1), 37-45.

Fernandes, P., Pereira, R., & Wiedenhöft, G. (2023). Organizational culture and the individuals' discretionary behaviors at work: a cross-cultural analysis. *Frontiers in Sociology*, 8, 1190488.

Garengo, P., & Betto, F. (2024). The role of organisational culture and leadership style in performance measurement and management: a longitudinal case study. *Production planning & control*, 35(2), 151-169.

Ghattas, A., Bassioni, H. A., & Gaid, S. A. (2022). HRM practices influence project performance in construction in terms of cost and time performance. *Journal of Construction Engineering and Management*, 148(2), 05021007.

Gigliotti, L. M., Paro, P. E. P., & Gerolamo, M. C. (2020). Measuring organizational culture from perceived values: proposal of an instrument. *GEPROS: Gestão da Produção, Operações e Sistemas (Online)*, 15(3), 69-101.

Grossman, R., Rosch, Z., Mazer, D., & Salas, E. (2015). What matters for team cohesion measurement? A synthesis. In *Team cohesion: Advances in psychological theory, methods and practice* (pp. 147-180). Emerald Group Publishing Limited.

Hartner-Tiefenthaler, M., & Loerinc, I. (2022). Development and Validation of a Scale to Measure Communication Behaviors in Hybrid Teams. In *Academy of Management Proceedings* (Vol. 2022, No. 1, p. 16041). Briarcliff Manor, NY 10510: Academy of Management.

Ingle, P. V., Gangadhar, M., & Deepak, M. D. (2024). Developing a project performance assessment model for benchmarking the project success of Indian construction projects. *Benchmarking: An International Journal*, 31(5), 1426-1452.

Ingle, P. V., Mahesh, G., & MD, D. (2021). Identifying the performance areas affecting the project performance for Indian construction projects. *Journal of Engineering, Design and Technology*, 19(1), 1-20.

Iranmanesh, S. H., & Hojati, Z. T. (2015). Intelligent systems in project performance measurement and evaluation. *Intelligent Techniques in Engineering Management: Theory and Applications*, 581-619.

Kim, S. C., Kim, Y. W., Park, K. S., & Yoo, C. Y. (2015). Impact of measuring operational-level planning reliability on management-level project performance. *Journal of Management in Engineering*, 31(5), 05014021.

Langford, E. C., & Jain, S. (2023). The importance of embedding an inclusive culture within healthcare teamwork education; an evaluation of implementation methods. *Postgraduate Medical Journal*, 99(1175), 1027-1032.

Malone, S., Rivera, J., Puerto-Torres, M., Prewitt, K., Sakaan, F., Counts, L., ... & Agulnik, A. (2023). A new measure for multi-professional medical team communication: design and methodology for multilingual measurement development. *Frontiers in Pediatrics*, 11, 1127633.

Matveeva, Y. V., Chigwanda, M. T., & Matveeva, V. P. (2022). Development of a system for evaluating innovation and investment project efficiency at industrial enterprises. *Вестник Самарского университета. Экономика и управление*, 13(1), 78-87.

Maylor, H., Johnson, M., Turner, N., & Gerald, J. (2017). *How is it going? Performance assessment in major projects*. In 77th Annual meeting of the Academy of Management: At the Interface. Design Society.

Mediani, H. S., & Kurniawan, T. (2018). Development of Team Cohesiveness Measurement Instruments in Interprofessional Collaborative Practice in Health Care. *Jurnal Keperawatan Padjadjaran*, 6(1), 98-108.

Nguyen, L. H., & Watanabe, T. (2017). The impact of project organizational culture on the performance of construction projects. *Sustainability*, 9(5), 781.

Noël, R., Miranda, D., Cechinel, C., Riquelme, F., Primo, T. T., & Munoz, R. (2022). Visualizing collaboration in teamwork: A multimodal learning analytics platform for non-verbal communication. *Applied Sciences*, 12(15), 7499.

Ojiako, U., Chipulu, M., Gardiner, P., Williams, T., Mota, C., Maguire, S., Shou, Y., & Stamati, T. (2014). Effect of project role, age and gender differences on the formation and revision of project decision judgements. *International Journal of Project Management*, 32, 556-567.

Omar, C., & Plumb, S. (2023). Teamwork and student engagement during practical sessions in laboratories. *Editorial Universitat Politècnica de València*, 1187-1195.

Pandian, V., Awang, M., Ishak, R., & Ming, G. K. (2023). Validity and reliability of organizational trust instrument. *Development*, 12(2), 84-96.

Park, S. (2020). Gender and performance in public organizations: a research synthesis and research agenda. *Public Management Review*, 23, 929 - 948.

Pathiranage, J. (2019). Organizational culture and business performance: an empirical study. *International Journal of Economics and Management*, 24(2), 264-278.

Ponta, L., Puliga, G., & Manzini, R. (2021). A measure of innovation performance: the Innovation Patent Index. *Management Decision*, 59(13), 73-98.

Prasetya, A. B., & Soehari, T. D. (2020). Analysis of the effect of project performance success for construction company competitiveness through customer satisfaction. *International Journal of Research*, 7, 275-284.

Reader, T. W., & Gillespie, A. (2023). Developing a battery of measures for unobtrusive indicators of organisational culture: a research note. *Journal of Risk Research*, 26(1), 1-18.

Sari, R. T., & Huzaifah, Z. (2023). The Role of Organizational Culture in the Implementation of Personal Hygiene. *KnE Medicine*, 371-378.

Sawaia, C. (2022). The PMO as Performance Driver for Non-Profit Organizations: From Operational Data to Strategic Goals. *Journal of Digital Innovation for Humanity*, 3, 1-12.

Shelley, A. (2023). Projects as vehicles of learning. In *Research Handbook on Project Performance* (pp. 240-253). Edward Elgar Publishing.

Shofiyah, N., Wulandari, F. E., Mauliana, M. I., & Pambayun, P. P. (2022). Teamwork skills assessment for STEM Project-Based Learning. *Jurnal Penelitian Pendidikan IPA*, 8(3), 1425-1432.

Sten, L. M., Ingesson, P., Bäckström, I., & Häggström, M. (2021). The development of a measurement instrument focusing on team collaboration in patient transfer processes. *International Journal of Quality and Service Sciences*, 13(1), 45-62.

Tigges, B. B., Miller, D., Dudding, K. M., Balls-Berry, J. E., Borawski, E. A., Dave, G., ... & Menon, U. (2019). Measuring quality and outcomes of research collaborations: an integrative review. *Journal of Clinical and Translational Science*, 3(5), 261-289.

Urbancová, H., & Vrabcová, P. (2022). Activities of the human resources department influenced by the organizational culture. *Ekonomicky Casopis*, 70(1), 76-93.

Varela, O., & Mead, E. (2018). Teamwork skill assessment: Development of a measure for academia. *Journal of Education for Business*, 93(4), 172-182.

Virine, L., & Trumper, M. (2017). Project Performance Measurement with Risks and Uncertainties. *World Scientific Book Chapters*, 151-159.

Widowati, R., Ismail, D. H., & Hermawan, E. (2023). Measurement Of Organizational Citizenship Behavior (OCB): Transformational Leadership Style, Organizational Culture And Work Motivation. *Lead Journal of Economy and Administration*, 1(4), 121-132.

Yoo, S. (2020). *The effects of expertise diversity and task interdependence on project team effectiveness: The moderating role of individual autonomy*. Doctoral dissertation, University of Minnesota.

**Data Availability Statement:** The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

**Conflicts of Interest:** The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

**Publisher's Note:** All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the

editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.



**Copyright:** © 2025 by the authors. This is a fully open-access article distributed under the terms of the Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0).