

LOCALIZATION FOR ELECTRIC VEHICLES USING ADAPTIVE Q-LEARNING FOR SMART TOURISM: THAILAND CASE STUDY

Pitchaya JAMJUNTR¹, Chanchai TECHAWATCHARAPAIKUL² and Pannee SUANPANG^{3*}

1 Electronic and Telecommunication Engineering, Faculty of Engineering, King
Mongkut's University of Technology Thonburi, Thailand;
pitchaya.jam@kmutt.ac.th

2 Electronic and Telecommunication Engineering, Faculty of Engineering, King
Mongkut's University of Technology Thonburi, Thailand; chanchai.tec@kmutt.ac.th

3 Department of Information Technology, Faculty of Science & Technology, Suan
Dusit University, Thailand; pannee_sua@dusit.ac.th

ARTICLE HISTORY

Received: 31 July 2024

Revised: 14 August 2024

Published: 24 August 2024

ABSTRACT

Localization plays a pivotal role in ensuring the precise navigation and safety of electric vehicles (EVs), particularly in the context of smart tourism. Traditional localization methods often encounter challenges in dynamic environments, such as urban areas in Thailand, where signal interferences and obstacles are prevalent. This paper presents a case study on the application of adaptive Q-learning to enhance localization accuracy and efficiency for EVs in Thailand's smart tourism sector. The proposed approach dynamically adjusts the learning rate based on real-time environmental feedback, allowing the system to adapt more effectively to changing conditions. The adaptive Q-learning algorithm is implemented and evaluated in a simulated environment using a combination of GPS, LiDAR, and IMU sensors. Experimental results reveal substantial improvements in localization accuracy, reduced convergence times, and increased computational efficiency compared to conventional Q-learning methods. These findings highlight the potential of adaptive Q-learning as a robust and efficient solution for EV localization in Thailand's diverse and dynamic urban landscapes. Future research will focus on optimizing the reward function, investigating alternative state representations, and pursuing real-world applications.

Keywords: Localization, Electric Vehicles, Adaptive Q-Learning, Machine Learning, Navigation, Smart Tourism

CITATION INFORMATION: Jamjuntr, P., Techawatcharapaikul, C., & Suanpang, P. (2024). Localization for Electric Vehicles Using Adaptive Q-Learning for Smart Tourism: Thailand Case Study. *Procedia of Multidisciplinary Research*, 2(8), 85.