28 National Graduate Conference (2/2024) [1]
17-18 May 2024 @ Bangkok, Thailand (Online Conference)

KUBERNETES RESOURCE PLANNING TOOL
FOR WEB APPLICATIONS

Thanaroj CHAROENPHUTHIWAT! and Utharn BURANASAKSEE!
1 Faculty of Science and Technology, Rajamangala University of Technology
Suvarnabhumi, Thailand; 164480322003-st@rmutsb.ac.th (T. C.);
utharn.b@rmutsb.ac.th (U. B.)

ARTICLE HISTORY
Received: 19 April 2024 Revised: 3 May 2024 Published: 17 May 2024

ABSTRACT

This research proposes a suitable resource management plan for enterprise use on the
Kubernetes platform to effectively reduce costs. By shifting investment in organization
resources to cloud services. The main objective of this research is to reduce organizational costs
and choose a simple and specific resource management plan that can help by selecting the most
appropriate resources according to current workload for web application of the organization.
This study measures the performance of the tool in comparison to individual experience to
assess appropriate resources. The resource management tool will be helpful in deciding the
most efficient resources within the scope of the budget available in the organization. Therefore,
using this resource management plan will help the organization save costs and increase
efficiency in web application.

Keywords: Cloud, Cost-effective, Kubernetes

CITATION INFORMATION: Charoenphuthiwat, T., & Buranasaksee, U. (2024).
Kubernetes Resource Planning Tool for Web Applications. Procedia of Multidisciplinary
Research, 2(5), 20.

Procedia of Multidisciplinary Research Article No. 20
Vol. 2 No. 5 (May 2024)



2]

INTRODUCTION

Nowadays, cloud systems have become a common choice for organizations, transitioning from
investing in their own resources to utilizing rental services. Presently, there are numerous
service providers available, such as AWS (Amazon Inc., 2023a), Google Cloud Platform
(GCP) (Google Inc., 2023), and Digitalocean (DigitalOcean Inc., 2023). Renting resources aids
organizations in reducing the costs associated with employing knowledgeable staff to manage
servers. However, cloud expenses can be high if organizations over-provision resources. Thus,
selecting appropriate and sufficient resources has become an interesting approach. In cloud
systems, most expenses are attributed to Microservices and applications running on Kubernetes
Pods. Each Pod comprises various Microservices interacting within a cluster, facilitating
scalability. Nonetheless, these nodes often incur high costs (Beda et al., 2023; Richardson &
Smith, 2023).

Various cost-saving strategies exist. For example, Amazon EC2 Spot instances (Amazon Inc.,
2023b) can partially reduce costs by utilizing suitable amounts of resources. While useful for
short-term cost management, Spot instances may not be suitable for all tasks, such as Database
Management Systems or systems requiring continuous availability. Another approach involves
selecting low-feature servers for initial installation and conducting load testing to match usage
levels. Although this approach allows for future upgrades, it may lead to downtime during
upgrades and resource shortages. Therefore, cost-effective resource allocation remains a
challenge. To address this, a tool has been developed to model Kubernetes-based applications,
assisting in selecting the most cost-effective resources tailored to application requirements,
user loads, and system efficiency, all within a reasonable budget (TechTarget Contributor.,
2023; Mullins, 2023; Amazon Inc., 2023b).

In response to these challenges, this research aims to developing a tool to create models on the
Kubernetes platform to select the most cost-effective resources for web applications or
software, aiming to reduce costs and enhance system efficiency. This tool addresses the issue
of selecting server features suitable for the system, user load, and system efficiency, all within
a reasonable budget.

LITERATURE REVIEWS

Kubernetes has emerged as a highly popular open-source platform and the most widely adopted
standard for continuously available systems. It is extensively utilized across various workloads,
such as big data, web services, and [oT, supporting flexible applications, environmental
consistency, OS mobility, and application-centric resource management (Beda et al., 2023).
Previous research by Zhong and Buyya (2020) discussed diverse strategies for cost-effective
container management by enhancing resource utilization and flexibly pricing servers with three
main approaches. First, supporting different workload profiles to adjust the initial placement
of containers in available resources by job packing. Second, resizing clusters to match changing
workloads through automatic scaling algorithms. And third, introducing mechanisms for
scheduling server shutdowns when underutilized to save costs and reallocating related jobs
without compromising progress. However, this research focuses on refining Kubernetes'
operational mechanisms to reduce server costs, but it acknowledges the challenge of selecting
servers suitable for system usage, lacking guidance on cost-effective server selection based on
price, features, and system efficiency.

Ding et al. (2022) proposed a new placement model to group the related pods into the same
node. This results in reducing the shared dependency libraries among multiple microservice
instance and memory usages. While our research focuses on finding appropriate physical
resources that can serve the load requirement, this research addresses different problems by
trying to improve the efficiently within the node itself.



[3]

Though Kubernetes allow resource usages to be adjusted by the current load, the repair and
recovery actions that increase or decrease the number of nodes can cause downtime to the
system especially those stateful microservices (Vayghan et al., 2021). Therefore, in this paper,
we focus on finding the most suitable server that can fit the needs while having the lowest cost
to take advantage of the cloud computing that we can adjust the server specification if the
workload changes.

RESEARCH METHODOLOGY

The researchers developed a tool for building models on the Kubernetes platform to select the
most cost-effective resources for web applications. The development process consisted of four
steps:

Step 1: Researchers conducted a study on cloud service providers supporting server rental on
the Kubernetes platform, installation methods, and related research.

Step 2: Researchers analyzed and designed a tool to explore the feasibility of building a model-
building tool on the Kubernetes platform for selecting the most cost-effective resources for web
applications.

Step 3: Researchers developed a model-building tool on the Kubernetes platform to select the
most cost-effective resources for web applications. This involved using tools such as:

1) Utilizing PHP language for developing web applications to test loads.

2) Employing MySQL database for data storage.

3) Scripting for server configuration based on desired test criteria.

4) Utilizing load testing tools with Wrk (Wu, 2019; Will, 2023) to assess loads.

5) Employing cloud services from Digitalocean to utilize the Kubernetes platform.

Step 4: Quality assessment and testing of the developed system involved comparing its features
with previous methodologies to evaluate advantages and disadvantages. Expert evaluation was
conducted.

RESEARCH RESULTS & DISCUSSION

Upon investigating cloud service providers supporting server rentals on the Kubernetes
platform, installation methods, and related research, it was found that Digitalocean is another
interesting option with reasonably priced servers compared to others. To enable the system to
serve as a model-building tool on the Kubernetes platform for selecting the most cost-effective
resources for web applications, servers must have two essential features:

Creation of Kubernetes platform servers allowing selection of Datacenter region. For this
research, the author chose the data center in Singapore, which is the closest to Thailand. The
minimum node requirement is 2 Nodes, and server features and prices can be selected
according to Table 2. The minimum feature will be Basic nodes with 1GB RAM/1 vCPUs at
$12/month per node ($0.018/hour).

Table 1 List of available droplet instance

Machine type (Droplet) vCPUs RAM Price/month Price/hour
Basic nodes 1 1GB $12 $0.018
Basic nodes 2 1GB $18 $0.027
Basic nodes 2 2.5GB $24 $0.036
Basic nodes 4 6GB $48 $0.071
Basic nodes 8 13GB $96 $0.143
Basic nodes(Premium Intel) 1 1GB $14 $0.021
Basic nodes(Premium Intel) 2 1GB $21 $0.031
Basic nodes(Premium Intel) 2 2.5GB $28 $0.042
Basic nodes(Premium Intel) 4 6GB $56 $0.083



[4]

Machine type (Droplet) vCPUs RAM Price/month Price/hour
Basic nodes(Premium Intel) 8 13GB $112 $0.167
Basic nodes(Premium AMD) 1 1GB $14 $0.021
Basic nodes(Premium AMD) 2 1GB $21 $0.031
Basic nodes(Premium AMD) 2 2.5GB $28 $0.042
Basic nodes(Premium AMD) 4 6GB $56 $0.083
Basic nodes(Premium AMD) 8 13GB $112 $0.167

Creation of servers for installing MySQL database version 5.7 by deploying a Droplet server.
The server should have the following features: 8CPUs, 16GB RAM, 320 GB SSD Disk, Debian
11 OS. Both features enable the model-building tool on the Kubernetes platform to select the
most cost-effective resources for web applications, making it a valuable resource
recommendation tool for application developers.

This research focuses on the process of developing a model-building tool on the Kubernetes
platform to select the most cost-effective resources for web applications. The analysis and
design of the system depicted in Figure 1 when the system administrator has configured the
testing environment. In Step 1, the system administrator installs the database, followed by Step 2,
where the system administrator installs the load testing tool (WRK). Subsequently, in Step 3,
the system administrator deploys the cluster and installs the web application system. Step 4
involves the system administrator sending load testing commands to the load testing tool
(WRK). Upon receiving the testing commands, the load testing tool executes the load test and
reports the results back to the system administrator. Step 5 entails the system administrator
sending commands to delete the cluster and the web application system, along with reporting
the deletion results. The steps keep repeated from step 3 to step 5 to test another configuration.
Finally, the system administrator compares the test results to make informed decisions on
selecting the most cost-effective resources for web applications.

System Sequence Diagram

Admin's PC Database System Cloud load tester Kubernetes Cluster

| | I
| |
| 1. Install database for testing L|
| |

|
I
I
| . . | |
Response the installation result
g o5P 1 \
|
|
1
|

| |
| 2. Install load tester software

[
11_ Response the installation result 1
I

|

| 3. Deploy clusters and install web application system
) T T
|

1 I
|‘ Response the installation result N

4. Send load testing command

|
|
f T
| |
| |
| |
| |
| |
|
| Response the setting result
|

' !

5. Send delete the cluster command
T T

| |
Response the deletion result

Figui’e 1 Sequence diagfam



[5]

In developing the system, the researchers opted to utilize PHP language for constructing the
web application to log employee data into a MySQL database for load testing purposes using
the Wrk load testing tool. Moreover, it was designed to be deployable on both Docker and
Cluster environments. The researchers opted to use cloud services from Digitalocean, a notable
provider supporting the Kubernetes platform and offering competitive pricing compared to
other providers. The architectural framework is depicted in Figure 2.

When the system administrator dispatches a set of commands to create a Cluster and installs
the web application system according to predefined conditions, the subsequent step involves
the system administrator sending a load testing command set to the load testing tool. The load
testing tool receives the command and executes load testing based on the testing configurations
set for the web application system through the Kubernetes cluster installed on Docker. The load
testing tool simulates system usage and randomly generates sample data to log employee
information into the web application system. The web application system then stores the data
in the database and returns results to notify the load testing tool of the outcome.

Architecture of the Kubernetes resource planning engine for web applications.

System Adminstrator's PC

® I
Send cluster creation command
and install the system

Usage test results

System Adminstrator

Send command to test usage

Load tester Database

A

Cloud Droplet

Return HTTP response

—1®

Send HTTP request

Y ¢ Save result to database

Kubernetes clusters @

T
Send HTTP request
@ Return HTTP response

Send HTTP request

Docker Server Web Application

Cloud Kubernetes Cluster

Return HTTP response

®

A

Figure 2 Architecture of the Kubernetes resource planning engine for web applications.

After the installation and testing of the system, the researchers compared the testing data as
shown in Figure 3. It can be observed that the basic node of 1vCPU 2GB RAM has a latency
average of 14.23ms at a cost of $12 per month. Following this, the basic node of 2vCPU 2GB
RAM has a latency average of 17.64 ms at a cost of $ 18 per month. Subsequently, the basic
node of 2vCPU 4GB RAM exhibits a latency average of 24.75ms with a monthly cost of $24 .
Moreover, the basic node of 8vCPU 16GB RAM shows a latency average of 17.51ms with a
monthly cost of $96 .Moving on to CPU-optimized instances, the instance of 2vCPU 4GB



[6]

RAM displays a latency average of 12.36ms at a cost of $42 per month. Additionally, CPU-
optimized instance of 4vCPU 8GB RAM presents a latency average of 12.16ms with a monthly
cost of $84 . Finally, CPU-optimized instance of 8vCPU 16GB RAM demonstrates a latency
average of 6.27ms at a monthly cost of $168.

The experiment shows that though the basic node has higher number of core count than that of
the CPU-optimized node, the CPU-optimized instances outperform the basic node on the
latency results which can be interpreted to more responsive result on the web application.
Furthermore, the instance of CPU-optimized of 2vCPU 4GB RAM cost lesser than the instance
of basic node of 8vCPU 16GB RAM.

® Latency Avg @ Price(USD)/month

200
150
3
= 100
)
=
2
T
—
50

BN({1WCPU BN(2vCPU BN(2vCPU BN({8¥CPU CPU-O(2vCPU CPU-O(4vCPU CPU-O(BvCPU
2GB RAM) 2GB RAM) 4GB RAM) 16GB RAM) 4GB RAM) 8GB RAM) 16GB RAM)

Server

Figure 3 Graph compare average latency and price per droplet size

In addition, the system's quality was evaluated by comparing the advantages and disadvantages
of the proposed methods, as illustrated in Table 2 . The method proposed in this research can
effectively develop a tool for modeling on the Kubernetes platform to select the most cost-
effective resources for web applications. The presented method proves to be cost-effective and
efficient.

Table 2 Comparison of the Proposed Method with the Expert System

Feature Proposed Method Expert System

Server Selection Server recommendation system available Manual selection required

Installation Automated installation commands Manual installation

Performance Can measure server performance Use tools for performance
measurement

Cost-effectiveness  Displays performance metrics and Not available

of Server Choice pricing

CONCLUSION

Given the current trend in investing in cloud service rentals and utilizing web applications on
Kubernetes platforms to reduce system costs, this research focuses on selecting suitable and
cost-effective server resources for web applications. The approach proposed in this study



[7]

involves developing a modeling tool on the Kubernetes platform to assist organizations in
selecting the most suitable and efficient resources for web application operations.

The researchers analyzed and processed data to determine the maximum cost-effectiveness for
resources, considering factors such as server resource usage volumes at different time intervals
and individual experience data to assess the suitability of resources for web applications.

The outcomes of this research will enable organizations to select suitable and efficient
resources within the budgetary constraints. Furthermore, the researchers plan to develop a
system interface in the future to allow general users to access and select server resources
independently to simulate selecting the most cost-effective resources.

REFERENCES

Amazon Inc. (2023a). Amazon Web Services (AWS). Retrieved from https://aws.amazon.com

Amazon Inc. (2023b). Amazon EC2 Spot. Retrieved from https://aws.amazon.com/th/ec2/spot

Beda, J., Burns, B., & McLuckie, C. (2023). Kubernetes. Retrieved from https://kubernetes.io/
blog/2018/07/20/the-history-of-kubernetes-the-community-behind-it.

Digitalocean Inc. (2023). Digitalocean. Retrieved from https://www.digitalocean.com.

Ding, Z., Wang, S., & Jiang, C. (2022). Kubernetes-oriented microservice placement with
dynamic resource allocation. IEEE Transactions on Cloud Computing.

Google Inc. (2023). Google Cloud Platform. Retrieved from https://cloud.google.com/gcp

Mullins, C. S. (2023). Database management system. Retrieved from https://www.tech
target.com/searchdatamanagement/definition/database-management-system.

Richardson, C., & Smith, F. (2023). Microservices: From Design to Deployment. Retrieved
from https://www.nginx.com/blog/microservices-from-design-to-deployment-ebook-
nginx.

TechTarget Contributor. (2023). Load testing. Retrieved from https://www.techtarget.
com/searchsoftwarequality/definition/load-testing.

Vayghan, L. A., Saied, M. A., Toeroe, M., & Khendek, F. (2021). A Kubernetes controller for
managing the availability of elastic microservice based stateful applications. Journal of
Systems and Software, 175, 110924,

Will, G. (2023). Wg/wrk: Modern HTTP benchmarking tool. Retrieved from
https://github.com/wg/wrk.

Wu, W., Feng, X., Zhang, W., & Chen, M. (2019, November). MCC: a predictable and scalable
massive client load generator. In International Symposium on Benchmarking,
Measuring and Optimization. Denver, CO, USA. 319-331

Zhong, Z., & Buyya, R. (2020). A cost-efficient container orchestration strategy in kubernetes-
based cloud computing infrastructures with heterogeneous resources. ACM
Transactions on Internet Technology (TOIT), 20(2), 1-24.

Data Availability Statement: The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Conflicts of Interest: The authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential conflict of
interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do
not necessarily represent those of their affiliated organizations, or those of the publisher, the
editors and the reviewers. Any product that may be evaluated in this article, or claim that may
be made by its manufacturer, is not guaranteed or endorsed by the publisher.



[8]

® @ @ Copyright: © 2024 by the authors. This is a fully open-access article
distributed under the terms of the Attribution-NonCommercial-
NoDerivatives 4.0 International (CC BY-NC-ND 4.0).




