
28th National Graduate Conference (2/2024)  [1] 
17-18 May 2024 @ Bangkok, Thailand (Online Conference) 
 

 
Procedia of Multidisciplinary Research  Article No. 20 
Vol. 2 No. 5 (May 2024) 

KUBERNETES RESOURCE PLANNING TOOL 
FOR WEB APPLICATIONS 
 
Thanaroj CHAROENPHUTHIWAT1 and Utharn BURANASAKSEE1 

1 Faculty of Science and Technology, Rajamangala University of Technology 
Suvarnabhumi, Thailand; 164480322003-st@rmutsb.ac.th (T. C.); 
utharn.b@rmutsb.ac.th (U. B.) 

 
ARTICLE HISTORY   
Received: 19 April 2024 Revised: 3 May 2024 Published: 17 May 2024 
 
ABSTRACT 
This research proposes a suitable resource management plan for enterprise use on the 
Kubernetes platform to effectively reduce costs. By shifting investment in organization 
resources to cloud services. The main objective of this research is to reduce organizational costs 
and choose a simple and specific resource management plan that can help by selecting the most 
appropriate resources according to current workload for web application of the organization. 
This study measures the performance of the tool in comparison to individual experience to 
assess appropriate resources. The resource management tool will be helpful in deciding the 
most efficient resources within the scope of the budget available in the organization. Therefore, 
using this resource management plan will help the organization save costs and increase 
efficiency in web application. 
Keywords: Cloud, Cost-effective, Kubernetes 
 
CITATION INFORMATION: Charoenphuthiwat, T., & Buranasaksee, U. (2024). 
Kubernetes Resource Planning Tool for Web Applications. Procedia of Multidisciplinary 
Research, 2(5), 20. 
 
  



[2] 

INTRODUCTION 
Nowadays, cloud systems have become a common choice for organizations, transitioning from 
investing in their own resources to utilizing rental services. Presently, there are numerous 
service providers available, such as AWS (Amazon Inc., 2023a), Google Cloud Platform 
(GCP) (Google Inc., 2023), and Digitalocean (DigitalOcean Inc., 2023). Renting resources aids 
organizations in reducing the costs associated with employing knowledgeable staff to manage 
servers. However, cloud expenses can be high if organizations over-provision resources. Thus, 
selecting appropriate and sufficient resources has become an interesting approach. In cloud 
systems, most expenses are attributed to Microservices and applications running on Kubernetes 
Pods. Each Pod comprises various Microservices interacting within a cluster, facilitating 
scalability. Nonetheless, these nodes often incur high costs (Beda et al. , 2023; Richardson & 
Smith, 2023). 
Various cost-saving strategies exist. For example, Amazon EC2 Spot instances (Amazon Inc., 
2023b) can partially reduce costs by utilizing suitable amounts of resources. While useful for 
short-term cost management, Spot instances may not be suitable for all tasks, such as Database 
Management Systems or systems requiring continuous availability. Another approach involves 
selecting low-feature servers for initial installation and conducting load testing to match usage 
levels. Although this approach allows for future upgrades, it may lead to downtime during 
upgrades and resource shortages. Therefore, cost-effective resource allocation remains a 
challenge. To address this, a tool has been developed to model Kubernetes-based applications, 
assisting in selecting the most cost-effective resources tailored to application requirements, 
user loads, and system efficiency, all within a reasonable budget (TechTarget Contributor., 
2023; Mullins, 2023; Amazon Inc., 2023b). 
In response to these challenges, this research aims to developing a tool to create models on the 
Kubernetes platform to select the most cost-effective resources for web applications or 
software, aiming to reduce costs and enhance system efficiency. This tool addresses the issue 
of selecting server features suitable for the system, user load, and system efficiency, all within 
a reasonable budget.  
 
LITERATURE REVIEWS 
Kubernetes has emerged as a highly popular open-source platform and the most widely adopted 
standard for continuously available systems. It is extensively utilized across various workloads, 
such as big data, web services, and IoT, supporting flexible applications, environmental 
consistency, OS mobility, and application-centric resource management (Beda et al., 2023). 
Previous research by Zhong and Buyya (2020) discussed diverse strategies for cost-effective 
container management by enhancing resource utilization and flexibly pricing servers with three 
main approaches. First, supporting different workload profiles to adjust the initial placement 
of containers in available resources by job packing. Second, resizing clusters to match changing 
workloads through automatic scaling algorithms. And third, introducing mechanisms for 
scheduling server shutdowns when underutilized to save costs and reallocating related jobs 
without compromising progress. However, this research focuses on refining Kubernetes' 
operational mechanisms to reduce server costs, but it acknowledges the challenge of selecting 
servers suitable for system usage, lacking guidance on cost-effective server selection based on 
price, features, and system efficiency. 
Ding et al. (2022) proposed a new placement model to group the related pods into the same 
node. This results in reducing the shared dependency libraries among multiple microservice 
instance and memory usages. While our research focuses on finding appropriate physical 
resources that can serve the load requirement, this research addresses different problems by 
trying to improve the efficiently within the node itself. 



[3] 

Though Kubernetes allow resource usages to be adjusted by the current load, the repair and 
recovery actions that increase or decrease the number of nodes can cause downtime to the 
system especially those stateful microservices (Vayghan et al., 2021). Therefore, in this paper, 
we focus on finding the most suitable server that can fit the needs while having the lowest cost 
to take advantage of the cloud computing that we can adjust the server specification if the 
workload changes. 
 
RESEARCH METHODOLOGY 
The researchers developed a tool for building models on the Kubernetes platform to select the 
most cost-effective resources for web applications. The development process consisted of four 
steps: 
Step 1:  Researchers conducted a study on cloud service providers supporting server rental on 
the Kubernetes platform, installation methods, and related research. 
Step 2: Researchers analyzed and designed a tool to explore the feasibility of building a model-
building tool on the Kubernetes platform for selecting the most cost-effective resources for web 
applications. 
Step 3:  Researchers developed a model-building tool on the Kubernetes platform to select the 
most cost-effective resources for web applications. This involved using tools such as: 
1) Utilizing PHP language for developing web applications to test loads. 
2) Employing MySQL database for data storage. 
3) Scripting for server configuration based on desired test criteria. 
4) Utilizing load testing tools with Wrk (Wu, 2019; Will, 2023) to assess loads. 
5) Employing cloud services from Digitalocean to utilize the Kubernetes platform. 
Step 4: Quality assessment and testing of the developed system involved comparing its features 
with previous methodologies to evaluate advantages and disadvantages. Expert evaluation was 
conducted. 
 
RESEARCH RESULTS & DISCUSSION 
Upon investigating cloud service providers supporting server rentals on the Kubernetes 
platform, installation methods, and related research, it was found that Digitalocean is another 
interesting option with reasonably priced servers compared to others. To enable the system to 
serve as a model-building tool on the Kubernetes platform for selecting the most cost-effective 
resources for web applications, servers must have two essential features: 
Creation of Kubernetes platform servers allowing selection of Datacenter region. For this 
research, the author chose the data center in Singapore, which is the closest to Thailand. The 
minimum node requirement is 2 Nodes, and server features and prices can be selected 
according to Table 2.  The minimum feature will be Basic nodes with 1GB RAM/1 vCPUs at 
$12/month per node ($0.018/hour). 
 
Table 1 List of available droplet instance 
Machine type (Droplet) vCPUs RAM Price/month Price/hour 
Basic nodes 1 1GB $12 $0.018 
Basic nodes 2 1GB $18 $0.027 
Basic nodes 2 2.5GB $24 $0.036 
Basic nodes 4 6GB $48 $0.071 

nodesBasic  8 13GB $96 $0.143 
Basic nodes(Premium Intel) 1 1GB $14 $0.021 
Basic nodes(Premium Intel) 2 1GB $21 $0.031 
Basic nodes(Premium Intel) 2 2.5GB $28 $0.042 
Basic nodes(Premium Intel) 4 6GB $56 $0.083 



[4] 

Machine type (Droplet) vCPUs RAM Price/month Price/hour 
Basic nodes(Premium Intel) 8 13GB $112 $0.167 
Basic nodes(Premium AMD) 1 1GB $14 $0.021 
Basic nodes(Premium AMD) 2 1GB $21 $0.031 
Basic nodes(Premium AMD) 2 2.5GB $28 $0.042 
Basic nodes(Premium AMD) 4 6GB $56 $0.083 
Basic nodes(Premium AMD) 8 13GB $112 $0.167 

 
Creation of servers for installing MySQL database version 5.7 by deploying a Droplet server. 
The server should have the following features: 8CPUs, 16GB RAM, 320  GB SSD Disk, Debian 
11 OS. Both features enable the model-building tool on the Kubernetes platform to select the 
most cost-effective resources for web applications, making it a valuable resource 
recommendation tool for application developers. 
This research focuses on the process of developing a model-building tool on the Kubernetes 
platform to select the most cost-effective resources for web applications. The analysis and 
design of the system depicted in Figure 1 when the system administrator has configured the 
testing environment. In Step 1, the system administrator installs the database, followed by Step 2, 
where the system administrator installs the load testing tool (WRK). Subsequently, in Step 3, 
the system administrator deploys the cluster and installs the web application system. Step 4 
involves the system administrator sending load testing commands to the load testing tool 
(WRK). Upon receiving the testing commands, the load testing tool executes the load test and 
reports the results back to the system administrator. Step 5 entails the system administrator 
sending commands to delete the cluster and the web application system, along with reporting 
the deletion results. The steps keep repeated from step 3 to step 5 to test another configuration. 
Finally, the system administrator compares the test results to make informed decisions on 
selecting the most cost-effective resources for web applications. 
 

 
Figure 1 Sequence diagram 
 



[5] 

In developing the system, the researchers opted to utilize PHP language for constructing the 
web application to log employee data into a MySQL database for load testing purposes using 
the Wrk load testing tool. Moreover, it was designed to be deployable on both Docker and 
Cluster environments. The researchers opted to use cloud services from Digitalocean, a notable 
provider supporting the Kubernetes platform and offering competitive pricing compared to 
other providers. The architectural framework is depicted in Figure 2.  
When the system administrator dispatches a set of commands to create a Cluster and installs 
the web application system according to predefined conditions, the subsequent step involves 
the system administrator sending a load testing command set to the load testing tool. The load 
testing tool receives the command and executes load testing based on the testing configurations 
set for the web application system through the Kubernetes cluster installed on Docker. The load 
testing tool simulates system usage and randomly generates sample data to log employee 
information into the web application system. The web application system then stores the data 
in the database and returns results to notify the load testing tool of the outcome. 
 

 
Figure 2 Architecture of the Kubernetes resource planning engine for web applications. 
 
After the installation and testing of the system, the researchers compared the testing data as 
shown in Figure 3.  It can be observed that the basic node of 1vCPU 2GB RAM has a latency 
average of 14.23ms at a cost of $12 per month. Following this, the basic node of 2vCPU 2GB 
RAM has a latency average of 17. 64 ms at a cost of $18 per month. Subsequently, the basic 
node of 2vCPU 4GB RAM exhibits a latency average of 24.75ms with a monthly cost of $24 .
Moreover, the basic node of 8vCPU 16GB RAM shows a latency average of 17. 51ms with a 
monthly cost of $96 .Moving on to CPU-optimized instances, the instance of 2vCPU 4GB 



[6] 

RAM displays a latency average of 12.36ms at a cost of $42 per month. Additionally, CPU-
optimized instance of 4vCPU 8GB RAM presents a latency average of 12.16ms with a monthly 
cost of $84 .Finally, CPU-optimized instance of 8vCPU 16GB RAM demonstrates a latency 
average of 6.27ms at a monthly cost of $168. 
The experiment shows that though the basic node has higher number of core count than that of 
the CPU-optimized node, the CPU-optimized instances outperform the basic node on the 
latency results which can be interpreted to more responsive result on the web application. 
Furthermore, the instance of CPU-optimized of 2vCPU 4GB RAM cost lesser than the instance 
of basic node of 8vCPU 16GB RAM. 

 
Figure 3 Graph compare average latency and price per droplet size 
 
In addition, the system's quality was evaluated by comparing the advantages and disadvantages 
of the proposed methods, as illustrated in Table 2 . The method proposed in this research can 
effectively develop a tool for modeling on the Kubernetes platform to select the most cost-
effective resources for web applications. The presented method proves to be cost-effective and 
efficient. 
 
Table 2 Comparison of the Proposed Method with the Expert System 
Feature Proposed Method Expert System 
Server Selection Server recommendation system available Manual selection required 
Installation Automated installation commands Manual installation 
Performance Can measure server performance Use tools for performance 

measurement 
Cost-effectiveness 
of Server Choice 

Displays performance metrics and 
pricing 

Not available 

 
CONCLUSION 
Given the current trend in investing in cloud service rentals and utilizing web applications on 
Kubernetes platforms to reduce system costs, this research focuses on selecting suitable and 
cost-effective server resources for web applications. The approach proposed in this study 



[7] 

involves developing a modeling tool on the Kubernetes platform to assist organizations in 
selecting the most suitable and efficient resources for web application operations. 
The researchers analyzed and processed data to determine the maximum cost-effectiveness for 
resources, considering factors such as server resource usage volumes at different time intervals 
and individual experience data to assess the suitability of resources for web applications. 
The outcomes of this research will enable organizations to select suitable and efficient 
resources within the budgetary constraints. Furthermore, the researchers plan to develop a 
system interface in the future to allow general users to access and select server resources 
independently to simulate selecting the most cost-effective resources. 
 
REFERENCES 
Amazon Inc. (2023a). Amazon Web Services (AWS). Retrieved from https://aws.amazon.com 
Amazon Inc. (2023b). Amazon EC2 Spot. Retrieved from https://aws.amazon.com/th/ec2/spot 
Beda, J., Burns, B., & McLuckie, C. (2023). Kubernetes. Retrieved from https://kubernetes.io/ 

blog/2018/07/20/the-history-of-kubernetes-the-community-behind-it. 
Digitalocean Inc. (2023). Digitalocean. Retrieved from https://www.digitalocean.com. 
Ding, Z., Wang, S., & Jiang, C. (2022). Kubernetes-oriented microservice placement with 

dynamic resource allocation. IEEE Transactions on Cloud Computing. 
Google Inc. (2023). Google Cloud Platform. Retrieved from https://cloud.google.com/gcp 
Mullins, C. S. (2023). Database management system. Retrieved from https://www.tech 

target.com/searchdatamanagement/definition/database-management-system. 
Richardson, C., & Smith, F. (2023). Microservices: From Design to Deployment. Retrieved 

from https://www.nginx.com/blog/microservices-from-design-to-deployment-ebook-
nginx. 

TechTarget Contributor. (2023). Load testing. Retrieved from https://www.techtarget. 
com/searchsoftwarequality/definition/load-testing. 

Vayghan, L. A., Saied, M. A., Toeroe, M., & Khendek, F. (2021). A Kubernetes controller for 
managing the availability of elastic microservice based stateful applications. Journal of 
Systems and Software, 175, 110924. 

Will, G. (2023). Wg/wrk: Modern HTTP benchmarking tool. Retrieved from 
https://github.com/wg/wrk. 

Wu, W., Feng, X., Zhang, W., & Chen, M. (2019, November). MCC: a predictable and scalable 
massive client load generator. In International Symposium on Benchmarking, 
Measuring and Optimization. Denver, CO, USA. 319-331 

Zhong, Z., & Buyya, R. (2020). A cost-efficient container orchestration strategy in kubernetes-
based cloud computing infrastructures with heterogeneous resources. ACM 
Transactions on Internet Technology (TOIT), 20(2), 1-24. 

 
Data Availability Statement: The raw data supporting the conclusions of this article will be 
made available by the authors, without undue reservation. 
 
Conflicts of Interest: The authors declare that the research was conducted in the absence of 
any commercial or financial relationships that could be construed as a potential conflict of 
interest. 
 
Publisher’s Note: All claims expressed in this article are solely those of the authors and do 
not necessarily represent those of their affiliated organizations, or those of the publisher, the 
editors and the reviewers. Any product that may be evaluated in this article, or claim that may 
be made by its manufacturer, is not guaranteed or endorsed by the publisher. 



[8] 

 
Copyright: © 2024 by the authors. This is a fully open-access article 
distributed under the terms of the Attribution-NonCommercial-
NoDerivatives 4.0 International (CC BY-NC-ND 4.0). 


