

THE DEMAND FORECASTING FOR OF CONTRACTOR BADGE PRINTING

Duangkamol THANYACHEEVEE¹ and Supachart IAMRATANAKUL^{1*}

1 Graduate School of Management and Innovation, King Mongkut's University of Technology, Thailand;
supachart9@gmail.com (Corresponding Author)

ARTICLE HISTORY

Received: 12 January 2024

Revised: 26 January 2024

Published: 9 February 2024

ABSTRACT

This paper objective is the pilot project to find the optimize method for inventory forecasting and to improve inventory of contractor badge printing. The forecasting methods are Moving Average, Holt's Exponential Smoothing Method, Winters' Additive, Winters' Multiplicative, Double Exponential Smoothing and Decomposition. The data collections are from two hard disk drive manufacturers and are forecast for the next three months of contractor badge inventory. We select the forecasting methods by measuring the forecasting errors and accuracy from MAD, MSE, MAE and MAPE. The results found that the best forecasting method for the contractor badge inventory for the next three months is exponential smoothing, which has the minimum average error, MAE = 35.43, MAD = 0.91, MSE = 7.94 and MAPE = 1.28% for forecasting the next three months. In conclusion, the result of contractor badge forecasting is helpful for preparing the appropriate number of raw materials for the contractor badge.

Keywords: Forecasting, Time Series Forecasting, Accuracy Method, Inventory

CITATION INFORMATION: Thanyacheevee, D., & Iamratanakul, S. (2024). The Demand Forecasting for of Contractor Badge Printing. *Procedia of Multidisciplinary Research*, 2(2), 2

การพยากรณ์สินค้าคงคลังของอุปกรณ์สำหรับการพิมพ์บัตรประจำตัวของผู้รับเหมา

ดวงกมล รัณภูชีวี¹ และ ศุภชาต เอี่ยมรัตนกุล^{1*}

1 บัณฑิตวิทยาลัยการจัดการและนวัตกรรม มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี;

supachart9@gmail.com (ผู้ประพันธ์บรรณาธิการ)

บทคัดย่อ

การวิจัยนี้เป็นการศึกษาถึงการใช้เครื่องมือและหลักการพยากรณ์ในรูปแบบต่าง ๆ ให้เหมาะสมตามความต้องการของผู้บุริโภค เพื่อปรับปรุงสินค้าคงคลังของอุปกรณ์สำหรับการพิมพ์บัตรประจำตัวของผู้รับเหมา และเป็นการศึกษาการทดลองใช้การพยากรณ์โดยวิธีต่าง ๆ โดยใช้หลักการพยากรณ์ในรูปแบบต่าง ๆ ทั้งหมด 6 วิธี ได้แก่ Moving Average, Holt's Exponential Smoothing Method, Winters' Additive, Winters' Multiplicative, Double Exponential Smoothing และ Decomposition โดยการรวมข้อมูลการพิมพ์บัตรประจำตัวผู้รับเหมาของโรงงานผลิตอาร์ดไดร์ฟแห่งหนึ่งเป็นข้อมูลรายเดือน จากนั้นทำการพยากรณ์จำนวนการพิมพ์บัตรประจำตัวผู้รับเหมาอีก 3 เดือนข้างหน้า และหาวิธีการพยากรณ์ที่มีค่าความคลาดเคลื่อนน้อยที่สุดจากค่า MAD, MSE, MAE และ MAPE และมีการนำเสนอข้อมูลเพื่อเปรียบเทียบข้อมูลของยอดการพิมพ์บัตรประจำตัวผู้รับเหมาจริงและค่าจากการพยากรณ์ จากการศึกษานี้พบว่าวิธีการพยากรณ์ที่เหมาะสมสำหรับการพิมพ์บัตรประจำตัวผู้รับเหมา คือ วิธีการพยากรณ์แบบ Exponential Smoothing มีค่าเฉลี่ยความคลาดเคลื่อนสมบูรณ์ MAE = 35.43, MAD = 0.91, MSE = 7.94 และ MAPE ร้อยละ 1.28 และจากการพยากรณ์โดยวิธีปรับเรียน Double Exponential Smoothing พบว่าเส้นของค่าผลลัพธ์ของการพยากรณ์มีความใกล้เคียงกับยอดการพิมพ์บัตรประจำตัวผู้รับเหมาจริง ดังนั้นผลลัพธ์ที่ได้จากการพยากรณ์ ทำให้สามารถเตรียมวัสดุสำหรับการพิมพ์บัตรได้อย่างเหมาะสม

คำสำคัญ: การพยากรณ์, การพยากรณ์แบบอนุกรมเวลา, ค่าความแม่นยำ, สินค้าคงคลัง

ข้อมูลการอ้างอิง: พดวงกมล รัณภูชีวี และ ศุภชาต เอี่ยมรัตนกุล. (2567). การพยากรณ์สินค้าคงคลังของอุปกรณ์สำหรับการพิมพ์บัตรประจำตัวของผู้รับเหมา. *Procedia of Multidisciplinary Research*, 2(2), 2

Data Availability Statement: The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

Conflicts of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright: © 2024 by the authors. This is a fully open-access article distributed under the terms of the Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0).